
Weak Isolation:
Theory and Its Impact
Lecture at Seoul National University, March 14, 2012

Professor Alan Fekete (University of Sydney)

University of Sydney

 Database Research Group

• Academics: Sanjay Chawla, Alan Fekete, Uwe Röhm
– Postdocs, Visitors, Students

• Database management: internals and applications

• Focus on consistency and performance

• System-oriented approaches

Databases

• Data that is shared among several applications, can be

stored and managed centrally in a complex software

system with dedicated hardware and staff

– Organizational benefits (accountability, economies of scale, etc)

• Database: a collection of shared data

• Database management system (DBMS): the complex

software that controls access to the database

3

Database Research

• Study issues related to managing substantial amounts of
data

• Storage, query processing, data mining, schema
management, data integration
– Hot topics in 2011: graph data, cloud data management,

privacy/security, data analytics, impact of new memory
technologies

• Combine approaches from infrastructure systems,
programming languages, data structures, theory, AI, etc

• Large, unified and well-established research international
community
– 2012 is 38th VLDB conference, 32nd SIGMOD, 28th ICDE

• Great commercialization record

4

Transaction Processing

• A powerful model from business data processing

• Each real-world change is performed through a program

which executes multiple database operations

– Some ops modify the database contents, based on data already

there and on program parameters

• Eg customer purchases goods

• ACID properties:

– Atomic (all or nothing, despite failures)

– Consistent (maintains data integrity)

– Isolated (no problems from concurrency)

– Durable (changes persist despite crashes)

5

Serializability (academic defn)

• Used to define the correctness of an interleaved

execution of several transactions (formalize “isolated”)

– Same values read, same final values as in serial (batch)

execution of the same transactions

• For every integrity condition C: if each txn acting alone

preserves C, then a serializable execution will preserve

C

– That is: programmer makes sure txn does the right thing on its

own, then platform makes sure no problems from concurrency

• Can be assessed by absence of cycles in a graph

showing conflicts/dependencies

– When different txns access the same items, and at least one txn

modifies

6

But…. Vendor advice

• Oracle DB: “Database inconsistencies can result unless

such application-level consistency checks are coded with

this in mind, even when using serializable transactions”

• “PostgreSQL's Serializable mode does not guarantee

serializable execution...” [before release 9.1]

• Why is this? Traditional lock-based correct concurrency

control performs poorly in important situations, so

platforms use different mechanisms that might perform

more reliably, but sometimes do the wrong thing

7 7

Our research agenda

• Theory: what properties of application code allow

certainty that data corruption will not arise from

concurrency, for various system mechanisms

– Provide assurance that all executions will be serializable

• Running on platforms that don’t provide this guarantee in general

• Impact 1: Guide DBAs (or application designers)

– DBA can check if applications will run correctly, together

– DBA can change things to get to this situation

– Understand the performance implications of different ways to

have this assurance

• Impact 2: Suggest new system mechanisms

– Ensure correctness and also perform reasonably

8

Isolation Levels
• SQL standard offers several isolation levels

– Each transaction can have level set separately

– Problematic definitions, but in best practice done with variations in lock
holding

• Serializable
– (ought to be default, but not so in practice)

– Traditionally done with Commit-duration locks on data and indices

 We’ll call this “Two Phase Locking (2PL)”

• Repeatable Read
– Commit-duration locks on data

• Read Committed
– short duration read locks, commit-duration write locks

• Read Uncommitted
– no read locks, commit-duration write locks

9

NB: note different usage of term;

Here we talk about a single txn’s

concurrency control mechanism

Snapshot Isolation (SI)

• A multiversion concurrency control mechanism was

described in SIGMOD ’95 by H. Berenson, P. Bernstein,

J. Gray, J. Melton, E. O’Neil, P. O’Neil

– Does not guarantee serializable execution!

• Supplied by Oracle DB, and PostgreSQL (before rel 9.1),

for “Isolation Level Serializable”

• Available in Microsoft SQL Server 2005 as “Isolation

Level Snapshot”

10

Snapshot Isolation (SI)

• Read of an item may not give current value

• Instead, use old versions (kept with timestamps) to find

value that had been most recently committed at the time

the txn started

– Exception: if the txn has modified the item, use the value it wrote

itself

• The transaction sees a “snapshot” of the database, at an

earlier time

– Intuition: this should be consistent, if the database was

consistent before

11

First committer wins (FCW)

• T will not be allowed to commit a modification to an item

if any other transaction has committed a changed value

for that item since T’s start (snapshot)

• Similar to optimistic CC, but only write-sets are checked

• T must hold write locks on modified items at time of

commit, to install them.

– In practice, commit-duration write locks may be set when writes

execute. These simplify detection of conflicting modifications

when T tries to write the item, instead of waiting till T tries to

commit.

12

Benefits of SI

• Reading is never blocked, and reads don’t block writes

• Avoids common anomalies

– No dirty read

– No lost update

– No inconsistent read

– Set-based selects are repeatable (no phantoms)

• Matches common understanding of isolation: concurrent

transactions are not aware of one another’s changes

13

Is every execution serializable?

• For any set of txns, if they all run with Two
Phase Locking, then every interleaved execution
is serializable

• For some sets of txns, if they all run with SI, then
every execution is serializable
– Eg the txns making up TPC-C

• For some sets of txns, if they all run with SI,
there can be non-serializable executions
– Undeclared integrity constraints can be violated

14

Example

• Table Duties(Staff, Date, Status)

• Undeclared constraint: for every Date, there is at
least 1 Staff with Status=‘Y’

• Transaction TakeBreak(S, D) running at SI

SELECT COUNT(*) INTO :tmp FROM Duties

 WHERE Date=:D AND Status=‘Y’;

 IF tmp < 2 ROLLBACK;

 UPDATE Duties

 SET Status = ‘N’

 WHERE Staff =:S AND Date =:D;

 COMMIT;

15

Example (continued)

16

• Possible execution, starting when
two staff (S101, S103) are on duty
for 2004-06-01

• Concurrently perform

TA: TakeBreak(S101, 2004-06-01)

TB: TakeBreak(S103, 2004-06-01)
– Each succeeds, as each sees

snapshot with 2 on duty

– No problem committing, as they
update different rows!

• End with no staff on duty for that
date!

• RA(r1) RA(r3) RB(r1) RB(r3) WA(r1)
CA WB(r3) CB
– Non-serializable execution

 S101 2004-06-01 ‘Y’

S102 2004-06-01 ‘N’

S103 2004-06-01 ‘Y’

etc etc etc

Write Skew

• SI breaks serializability when txns modify different items
in each other’s read sets
– Neither txn sees the other, but in a serial execution one would

come later and so see the other’s impact

• This is fairly rare in practice

• Eg the TPC-C benchmark always runs correctly under SI
– whenever its txns conflict (eg read/write same data), there is also

a ww-conflict: a shared item they both modify (like a total
quantity) so SI will abort one of them

17

Interaction effects

• You can’t think about one program, and say “this
program can use SI”

• The problems have to do with the set of
application programs, not with each one by itself

• Example where T1, T2, T3 can all be run under
SI, but when T4 is present, we need to fix things
in T1

• Non-serializable execution can involve read-only
transactions, not just updaters

18

Overview

1. Review of databases, isolation levels and
serializability

2. Theory to determine whether an application will
have serializable executions when running at SI

3. Modifying applications

4. Fixing the DBMS

5. Replicated databases

6. Future work

19

School of Information Technologies

Alan Fekete*, Dimitrios Liarokapis , Elizabeth O’Neil, Patrick O’Neil, Dennis Shasha**

Making Snapshot Isolation

Serializable [ACM TODS, 2005]

*University of Sydney U. Massachusetts, Boston **NYU

Multiversion Serializability Theory

• From Y. Raz in RIDE’93
– Suitable for multiversion histories

• WW-conflict from T1 to T2
– T1 writes a version of x, T2 writes a later version of x

• In our case, succession (version order) defined by commit times of
writer txns

• WR-conflict from T1 to T2
– T1 writes a version of x, T2 reads this version of x (or a later

version of x)

• RW-conflict from T1 to T2 (Adya et al ICDE’00 called
this “antidependency”)
– T1 reads a version of x, T2 writes a later version of x

• Serializability tested by acyclic conflict graph

21

Interference Theory

• We produce the “static dependency graph”
– Node for each application program

– Draw directed edges each of which can be either
• Non-vulnerable interference edge, or

• Vulnerable interference edge

• Based on looking at program code, to see what
sorts of conflict situations can arise

• More complicated with programs whose
accesses are controlled by parameters

• A close superset of SDG can be calculated
automatically in some cases

22

Edges in the SDG
• Non-vulnerable interference edge

from T1 to T2

• Conflict, but it can’t arise
transactions can run concurrently

– Eg “ww” conflict

• Concurrent execution
prevented by FCW

– Or “wr” conflict

• conflict won’t happen in
concurrent execution due
to reading old version

• Eg

– T1 = R1(x) R1(y) W1(x)

– T2 = R2(x) R2(y) W2(x) W2(y)

• Vulnerable interference edge from
T1 to T2

• Conflict can occur when
transactions run concurrently

– Eg “rw without ww”: rset(T1)
intersects wset(T2), and
wset(T1) disjoint from
wset(T2)

• Eg

– T1 = R1(x) R1(y) W1(x)

– T2 = R2(x) R2(y) W2(y)

• Shown as dashed edge on
diagram

23

Paired edges

• In SDG, an edge from X to Y implies an edge from Y to

X

• But the type of edge is not necessarily the same

– Both vulnerable, or

– Both non-vulnerable, or

– One vulnerable and one non-vulnerable

24

Dangerous Structures

• A dangerous structure is two edges linking three application
programs, A, B, C such that

– There are successive vulnerable edges (A,B) and (B,C)

– (A, B, C) can be completed to a cycle in SDG
• Call B a pivot

– Special case: pair A, B with vulnerable edges in both
directions

25

A B C

Path through zero or more edges

from C to A

Pivot Dangerous structure

The main result

• Theorem: If the SDG does not contain a

dangerous cycle, then every execution is

serializable (with all transactions using SI

for concurrency control)

– Applies to TPC-C benchmark suite

26

Example: SmallBank Benchmark

• Traditional benchmarks (e.g. TPC-C) are already

serializable under SI

• SmallBank benchmark: designed to have non-

serializable executions under SI

– three tables:

Account, Saving, Checking

– five transactions of a banking scenario:

Balance, WriteCheck, DepositChecking, TransactionSaving,

Amalgamate

27

SmallBank Dependencies

28

• Read-Dependencies(WR):

• Write-Dependency(WW):

• Anti-Dependencies(RW):

WriteCheck (N,V):

…

UPDATE Account

SET bal=bal-V

WHERE custid=x;

COMMIT

Balance(N):

...

SELECT bal

FROM Account

WHERE custid=x;

...

WriteCheck (N,V):

...

UPDATE Account

SET bal=bal-v

WHERE custid=x;

…

DepositChecking (N,V):

...

UPDATE Account

SET bal=bal+V

WHERE custid=x;

...

Balance(N):

...

SELECT bal

FROM Account

WHERE custid=x;

…

Writecheck(N,V):

...

UPDATE Account

SET bal=bal-V

WHERE custid=x;

…

WC Bal

Bal WC

WC DC

SDG of SmallBank

29

1-Balance (Bal)

2-Amalgamate (Amg)

3-DepositChecking (DC)

4-TransactionSaving (TS)

5-WriteCheck (WC)

Vulnerable antidependency (RW)
Not Vulnerable (WW)
Not Vulnerable (WR)

Analysis of SmallBank’s SDG

30

What is the dangerous structure???

 nodes A, B, and C:

• anti-dependency A B

• anti-dependency B C

• path from C to A or A=C

• In this case, only dangerous
structure is Bal WC TS

Main theorem: Proof Sketch I

(Find crucial feature in CSG)
• In any cycle in CSG, there exists

– TA to TB have rw-dependency, and are concurrent

– TB to TC have rw-dependency, and are concurrent

• Here TC is earliest committer among the cycle

• Case analysis relating types of dependency edge to

ordering between start/commit times

31

Main theorem: Proof Sketch II

(Relate CSG and SDG)
• If TA to TB is in CSG, then TA to TB is in SDG

• If edge in CSG has rw-dependency and transactions are

concurrent, then edge in SDG is vulnerable

32

Main theorem: Proof Sketch III

• Assume existence of non-serializable execution

• So exists cycle in CSG

• So has special structure

– TA to TB to TC, each being (rw and concurrent)

• So cycle in SDG with consecutive vulnerable

edges

– dangerous structure

• Contradiction, if SDG has no dangerous

structure

33

Overview

1. Review of databases, isolation levels and
serializability

2. Theory to determine whether an application will
have serializable executions when running at SI

3. Modifying applications

4. Fixing the DBMS

5. Replicated databases

6. Future work

34

School of Information Technologies

Mohammad Alomari, Alan Fekete, Uwe Röhm

A Robust Technique to Ensure

Serializable Executions with

Snapshot Isolation

DBMS[ICDE’09]

University of Sydney

Modifying application code

• DBA modifies one or more of the programs that

make up the mix

• Modifications should not alter the observed

semantics of any program

• Modified set of programs should have all

executions serializable

– So modified SDG has no dangerous structure

36

Decisions

• Decide WHERE: choose a set of edges containing at

least one from each a dangerous structure

– Finding a minimal set is NP-Hard

– One easy choice: choose ALL vulnerable edges

• Decide HOW: introduce ww conflict on chosen edges

– Without changing program semantics

– Materialize or Promotion or External Locking

• Outcome: modified application mix has SDG where each

chosen edge is not vulnerable

– Modified application SDG has no dangerous structure

37

Approach 1: Materialize the Conflict

38

CustomerID Value

500345 50.00

Conflict Table

Balance(N):
.....
SELECT Custid INTO X
FROM Account
WHERE Name=N;

UPDATE Conflict
SET value=value+1
WHERE custid=X;

SELECT bal
FROM Checking
WHERE custid=X;

Writecheck(N,V):
.....
SELECT Custid INTO X
FROM Account
WHERE Name=N;

UPDATE Conflict
SET value=value+1
WHERE custid=X;

UPDATE checking
SET bal=bal-V
WHERE custid=X;
.....

First Committer Wins
Rule

Both programs in the chosen edge get an extra update to a new table that is

not used elsewhere in the application

•target row parameterized so FCW conflict happens exactly when txns have

rw-dependency

RW-dependency

Proposed in Fekete et al, TODS 2005

In Oracle, can use SELECT FOR UPDATE to get the FCW check as

if this actually did a write

Doesn’t work this way in other platforms like MS SQL Server

Approach 2: Promote a Read

39

Balance(N):
.....
SELECT bal
FROM Account
WHERE custid=X;

UPDATE Account
SET bal=bal
WHERE custid=X;
.....

WriteCheck(N,V):
.....
UPDATE Account
SET bal=value
WHERE name=X;
.....

First Committer Wins Rule

Custid Value

John 500.00

Account Table

Source program of chosen edge gets an extra update to the row which

is in rw-dependency

• identity update: sets row to current value

RW-dependency

Proposed in Fekete et al, TODS 2005

40

Approach 3:External Lock (ELM)

CustomerID Value

500345 50.00

Account Table

Balance(N):
.....
SELECT Custid INTO X
FROM Account
WHERE Name=N;

SELECT bal
FROM Checking
WHERE custid=X;

…

Writecheck(N,V):
.....
SELECT Custid INTO X
FROM Account
WHERE Name=N;

UPDATE checking
SET bal=bal-V
WHERE custid=X;
......

Lock (N)

Commit

Release(N)

Lock(N)

Commit

Release(N)

Each transaction in the chosen edge is surrounded by explicitly
lock/unlock on a suitable set of parameters

41

Why ELM is different from 2PL?

• Transactions that are not involved in chosen edges do
not set locks at all

• There are only exclusive locks, no shared locks

• Even if a transaction touches many objects, it may need
to lock only one or a few string values

• All locking is done at the start of the transaction, before
any database activity has occurred

• It can be implemented without risk of deadlock

Performance impact

• Does modification impact much on performance?

• For SmallBank, DBA could
– Choose a minimal edge set which is just Bal WT

(call this choice BW)

– Choose a minimal edge set WT TS
(call this choice WT)

– Choose ALL vulnerable edges

• Each can be done by Materialize or Promotion or ELM

• This gives at least 9 options for DBA to modify
application; which gives best performance?

• We take performance of SI as “target” (but we try to get
this level of performance as well as serializability)

42

Experiment Setup

• Evaluating techniques on PostgreSQL 8.2 and a
commercial platform offering SI

• Multi-threaded client executing SmallBank transactions
using stored procedures
– Each thread chooses one transaction type randomly

– a ramp-up period 30 second followed by one minute measurement
interval

• Parameters:
Choice of SDG edges on which to introduce conflict,
technique to introduce conflict, low & high contention
scenarios (controlled by size of hotspot getting 90% of
accesses)

43

44

PostgreSQL-Low contention

Commercial Platform - Low contention

48

Modifying applications: Lessons

• Choice of edge set really matters with promote or

Materialize

• Some choices can suffer substantial loss of performance

compared to SI

– It is not wise to place write operations in a previously read-only

txn

• ELM gets good performance for all the various edge sets

– ELM can even get better performance than SI under contention,

because locks on an edge also lead to blocking on self-loops of

SDG, where ww-conflicts lead to frequent aborts with SI

49

School of Information Technologies

Alan Fekete

Allocating Isolation Levels to

Transactions

[PODS’05]

University of Sydney

Mixing isolation levels

• Theory usually assumes one cc mechanism for the dbms

• But in fact different txns can use different mechanisms

• Either declaratively, by setting “isolation level”

• Or programatically, by explicit LOCK TABLE and
UNLOCK TABLE statements

51

Alternative: allocate isolation levels

• Can we ensure serializable execution without modifying

application code?

– Just set isolation level for each transaction appropriately

– In configuration, or at session establishment

• Potential advantage: don’t need to modify application

source

52

Extension of theory

• Allocate some transactions to use 2PL and
others to use SI
– Eg on MS SQLServer 2005

• Theorem: If every pivot uses 2PL, then every
execution is serializable (with other transactions
using either 2PL or SI for concurrency control)
– Minimal set of transactions to run with 2PL is the set

of pivots (call this approach Pivot2PL)

– Of course, using 2PL for ALL transactions guarantees
serializable execution; this is a maximal set

53

Mixing Isolation Levels; Low Contention

54

Compare to application modification

55

Allocating Isolation Levels: Lessons

• Can lose quite a bit of SI’s performance

• Generally, it would be better for the DBA to get the

information needed and make a wise choice of how to

modify application code

– If they have permissions etc to do so

58

Overview

1. Review of databases, isolation levels and
serializability

2. Theory to determine whether an application will
have serializable executions when running at SI

3. Modifying applications

4. Fixing the DBMS

5. Replicated databases

6. Future work

59

School of Information Technologies

Michael Cahill, Alan Fekete, Uwe Röhm

Serializable Isolation for Snapshot

Databases

[Sigmod’08 “Best paper”,

then ACM TODS 2009]

University of Sydney

Serializable SI

• If we can alter the DBMS, we could provide a new

algorithm for serializable isolation

– Online, dynamic

– Modifications to standard Snapshot Isolation

• To do so:

– Keep versions, read from snapshot, FCW (like SI)

– Detect read-write conflicts at runtime

– Abort transactions with consecutive rw-edges

• Much less often than traditional optimistic CC

• Don’t do full cycle detection

61

Challenges

• During runtime, rw-pairs can interleave arbitrarily

• Have to consider begin and commit timestamps:

– which snapshot is a transaction reading?

– can conflict with committed transactions

• Want to use existing engines as much as possible

• Low runtime overhead

• But minimize unnecessary aborts

62

SI anomalies: a simple case

63

pivot commits last

Algorithm in a nutshell

• Add two flags to each transaction (in & out)

• Set T0.out if rw-conflict T0  T1

• Set T0.in if rw-conflict TN  T0

• Abort T0 (the pivot) if both T0.in and T0.out are set

– If T0 has already committed, abort the conflicting transaction

64

Detection: write before read

65

read old y

T1.in = true

T0.out = true

Detection: read before write

66

lock x, SIREAD

write lock x

TN.out = true

T0.in = true

How can we

detect this?

SIREAD mode lock doesn’t block anything

Just for record keeping

Kept even after transaction commits

Main Disadvantage: False positives

67

no cycle

unnecessary

abort

Prototype in Oracle InnoDB

• Implemented in Oracle InnoDB plugin 1.0.1

– Most popular transactional backend for MySQL

– Already includes multiversion concurrency control

• Added:

– True Snapshot Isolation with first-committer-wins

(InnoDB’s “repeatable read” isolation has non-standard

semantics)

– Serializable SI, including phantom detection

(uses InnoDBs next-key locking)

• Added 230 lines of code to 130K lines in InnoDB

– Most changes related to transaction lifecycle management

68

Experimental scenarios

• sibench – synthetic microbenchmark

– conflict between sequential scan and updating a row

– table size determines write-write conflict probability and CPU

time required for scan

• TPC-C++ - modified TPC-C to introduce an SI anomaly

– added a “credit check” transaction type to the mix

– measured throughput under a variety of conditions

– most not sensitive to choice of isolation level, but we found a mix

favoring “stock level” transactions that demonstrates the tradeoff

69

sibench: 10 reads per write

70

sibench: 100 reads per write

71

TPC-C++: 10 warehouses

72

TPC-C++: special “stock level” mix

73

But SI is NOT serializable!

Serializable SI: Lessons

• New algorithm for serializable isolation

– Online, dynamic, and general solution

– Modification to standard Snapshot Isolation

– Keeps the features that make SI attractive:

Readers don’t block writers, much better scalability than S2PL

• In most cases, performance is comparable with SI

• Never worse than locking serializable isolation

• Feasible to add to an RDBMS using Snapshot Isolation

(such as Oracle) with modest changes

– PostgreSQL release 9.1 has done this – Isolation Level

Serializable now executes serializably!

74

Summary

75

Fix cc;

Works for all applications;

Quite good performance

Can we change engine internals?

Y N

Do we know application design?

Y N

Do 2PL for all transactions;

Performance often very poor

Can we modify application code?

Y

Find and analyse SDG;

Choose modifications wisely;

Good performance

N

Find and analyse SDG;

Allocate pivots to use 2PL;

Performance often suffers

Overview

1. Review of databases, isolation levels and
serializability

2. Theory to determine whether an application will
have serializable executions when running at SI

3. Modifying applications

4. Fixing the DBMS

5. Replicated databases

6. Future work

76

School of Information Technologies

Hyungsoo Jung Hyuck Han* Alan Fekete Uwe Röhm

Serializable Snapshot Isolation

for Replicated Databases

in High-Update Scenarios

[VLDB’11]

University of Sydney *Seoul National

University

Our Approach

• Update anywhere-anytime-anyway transactional replication

• 1-copy SR over SI replicas

• New theorem (extension of [TODS2005], with extra

properties to reduce false positive aborts)

• System design and prototype implementation

– Detect read-write conflicts at commit time.

– Abort transactions with a certain pattern of consecutive rw-edges

– Retrieving complete rw-dependency information without propagating

entire readsets.

78

Previous Work for 1-copy SR over SI
[Bornea et al., ICDE2011]

79

Bornea et al. This Work

Architecture Middleware Kernel

Readset

Extraction

SQL parsing Kernel interception

Certification ww-conflict

1 rw-edge

ww-conflict

2 rw-edges

Optimized for Read mostly Update heavy

Descending Structure

80

r1(x0)

r2(y0)w2(x0)

w3(y0)

Tp

Tf

Tt

lsv(Tp)

lsv(Tf)

lsv(Tt)

• There are three transactions Tp, Tf

and Tt with the following

relationships:

1. Tp Tf and Tf Tt

2. lsv(Tf) lsv(Tp) && lsv(Tt) lsv(Tp)

Descending Structure

lsv is a number we

keep for each

transaction: largest

timestamp a

transaction reads

from

Main Theorem for 1-copy SR

81

• Central Theorem: Let h be a history over a set of

transactions obeying the following conditions

– 1-copy SI

– No descending structure

 Then h is 1-copy serializable.

Concurrency Control Algorithm

• Replicated Serializable Snapshot Isolation (RSSI)

– ww-conflicts are handled by 1-copy SI.

– When certification detects a “descending structure”, we abort

whichever completes last among the three transactions.

82

r1(x0)

r2(y0)w2(x

0)

w3(y0)

Tp

Tf

Tt

lsv(Tp)

lsv(Tf)

lsv(Tt)

Abort Tf

Technical Challenges

• The management of readset information and lsv-

timestamps is pivotal to certification.

• We developed a global dependency checking protocol

(GDCP) on top of LCR broadcast protocol [Guerraoui et

al., ACM TOCS2010].

– GDCP mainly performs two tasks at the same time:

• Total order generation using existing LCR protocol.

• Exchanging rw-dependency information without sending the entire

readset.

83

In Each Participating Node

84

Storage

readset & writeset

extraction

Certifier

Replication

Manager

Query

Processing

To other

replicas

Implementation is

based on Postgres-RSI

Experimental Setup

• Comparing

– RSSI (Postgres-RSSI) : our proposal (1SR)

– CP-ROO – conflict-management of Bornea et al. with our

architecture (1SR)

– RSI : certification algorithm of Lin et al. with our architecture

• 1-SI, but not 1SR !!

• Synthetic micro-benchmark

– Update transactions read from a table, update records in a different table.

– Read-only transactions read from a table.

• TPC-C++ [Cahill et al.,TODS2009]

– No evident difference in performance between the three algorithms

(details in the paper)

87

Micro-benchmark, 75%Updates:

Throughput (8 Replicas)

88

Micro-benchmark: Performance Spectrum

(8 Replicas, MPL=640)

90

Overview

1. Review of databases, isolation levels and
serializability

2. Theory to determine whether an application will
have serializable executions when running at SI

3. Modifying applications

4. Fixing the DBMS

5. Replicated databases

6. Future work

91

Future Research Directions

• Read Committed

– Actually, two different algorithms (one lock-based, one

multiversion)

• Eventual Consistency

– Common in Cloud data management platforms

– Actually many quite different sets of properties [see Wada et al,

CIDR’11]

• Performance Models

– How to predict performance properties from key parameters such

as transaction weight

92

Conclusion

• Theory: identify conditions on application program conflict

patterns, for which all executions are serializable when run on a

particular concurrency control mechanism

• Impact 1: Guide application developer to produce code that has

these patterns

• How to modify existing code, to produce these patterns

• What impact on performance

• Impact 2: Propose new concurrency control mechanisms, that

have similar performance to the original ones, but guarantee

correctness

93

