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And we don’t want a patient tethered to a bed or fixed medical device
University of Virginia



e

C
D

 Problems and Vision

e Univ. of Virginia AlarmNet System
— Architecture
— Main Ildeas/Results

e Current Work and Summary
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e Aging Populations

 High Cost of Medical Care
e Lack of Facilities

o Quality of Life Issues

* Solution: Home Health Care
CCRC
Assisted Living
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* Humans-in-Loop

» Heterogeneous
 Evolution
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UCLA, Harvard, Yale, GaTech, MIT, Univ of
Washington, Johns Hopkins, Imperial College, U.
of Geneva, UPenn, UVA, etc.

GE Health, Intel, Philips, Verizon, IBM, etc.
West Wireless Health Center
Wireless Life Sciences Alliance

Europe, Asia, US
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e Scale
— Numbers of sensors
— Number of smart home units
— Number of facilities
— Number of functions on body networks
— Numbers of body networks

« Activity Recognition (AR) not accurate
enough

o Safety
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« Tailored to patient
e Evolves over time

o Seemlessly integrate heterogeneous
technology

o Largely Passive
o 24/7 Monitoring and Care
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 |dentify normal behaviors

 |dentify anomalous behaviors

 Detect medical problems (depression) early
* Improve quality of life

e Monitor adherence to and effectiveness of
treatments

e Detect dangerous situations
e Maintain privacy
* Longitudinal studies
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Assisted Living and Residential Monitoring Network
e In-Lab Testbed

* Privacy — deployed in 8 homes

« Detecting Falls — students

« CAR - 22 patients in Assisted Living
o Sleep Study - 10 subjects

 Body Sensor Networks

e Deployment Plans — Depression in the Elderly
— Deployed in one home
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e Sleep motion (restlessness and agitation)

o Sleep quality
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EEG: measures brain waves
EOG: measures eye movements

EMG: measures electrical activity
of muscles

Disadvantages

— EXxpensive

— Uncomfortable

— Measure oncel/twice

University of Virginia



ls. Wearable Devices in Home
Environments

e Actiwatch

e Headband - Zeo

« Disadvantage

— Users need to wear
the devices

University of Virginia



e Pressure Pads

— Disadvantage
* Not entirely comfortable
* Do not infer body positions
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Combines RFID
technology with
Sensors

Used to sense light,
temperature and
acceleration

Powered and read by
RFID readers




WISP Instrumented
Mattress

+X Tag 1

+z 3

+Z2

+y
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* For different body positions, orientations of one or more axes of the
accelerometers with respect to gravity are different

 We combine the readings from all three tags to infer body position
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« During training, for each body position of the
subject, we construct a 9-tuple from the readings
of the three tags

 We train a Bayesian classifier with these tuples

 We use this classifier to infer body positions
during sleep

University of Virginia



9 Controlled Experiments for
¥ Body Position Inference

10 subjects
o 3 different mattresses

« Each subject lies in each of the 4 body positions for 2.5
minutes each

* For each position, we use the data from the first 2
minutes for training and next 30 seconds for evaluating
accuracy of body position inference

University of Virginia
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e 3 settings:

— setl: differentiate between
the bed being empty or

701

empty, lying and sitting

occupied £ a0
o
= 50
: : p I set 1
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all lying positions, empty i m _

and sitting 1 2 3 162 183 283 (18283
Tags Used to Classify
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W Realistic Overnight
S Experiments

e 6 nights ‘i

 DDR pads (sense pressure)
used as baseline system

e Also compare with an
IPhone application: Sleep

Cycle

e We also recorded the video
of the 6 nights’ sleep




Evaluation by Cross
Validation

e 6 Evaluation sets

* In each set, we train our system based on
5 nights of data and evaluate the
performance of the remaining night

University of Virginia



Movement Detection
Evaluation

DDR pad
e Ground Truth

— Validated the H
performance of 3, ‘
DDR padS by U:OOUAM AM 2:06AM 3:0(?:AM 4:00 AM ’5]:‘00
comparing with 3 WISP
hours video N

— DDR pads are El|
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Body Position
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e Ground Truth
— Collected from the recorded video
— Accurate within 5%
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e Correlation between sleep movement and
agitation with incontinence in dementia
patients

— Combine with acoustic and wetness sensors
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o Self-configuring - Highly flexible (radio
shack model)

 New sensor types can be added later

e Contributes to Activity Recognition (AR)
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* Netbridge device (Stargate)
— single board computer
— embedded Linux
— 400MHz Xscale
— mote daughterboard
— wireless ethernet
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&u» Privacy - Many Stakeholders

e Patients
o Patients family and friends

* Doctor — what advantages for them in
treating patients

 Nurse

e Technician

e Orderly

e Admin

e Soclal Worker
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Personal medical data
Personal activity data
Environmental data
Contextual data
Longitudinal data

System Performance data

University of Virginia



Authorization Framework
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Fingerprint And Timing-based Snoop attack

% Adversary

Bedroom #2 @) Kitchen Fingerprint_and TirT_leStamp
Snooping Device
®
[ ] ®)
Timestamps Finaerorints Locations and
e | P gerp Sensor Types
‘ T1
?
® I :
T2 — -
[ 1
T3 I o
Bedroom #1 O
Front Door

V. Srinivasan, J. Stankovic, K. Whitehouse, Protecting Your Daily In-Home
Activity Information fron a Wireless Snooping Attack, Ubicomp, 2007.
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ADLs inferred:

— Sleeping, Home Occupancy
— Bathroom and Kitchen Visits \
— Bathroom Activities: Showering

Toileting, Washing
— Kitchen Activities: Cooking

High level medical information
Inference possible

HIPAA requires healthcare
providers to protect this
Information
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8 homes (X10) - different floor plans
— Each home had 12 to 22 sensors

1 week deployments

1, 2, 3 person homes

Violate Privacy - Techniques Created

— 80-95% accuracy of AR via 4 Tier Inference

FATS solutions
— Reduces accuracy of AR to 0-15%

University of Virginia
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Privacy Is critical (many types)
Overridden on alarms
Use dynamic context and request history

Inconsistency checking algorithms
required

University of Virginia
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PDA real-time query issuer — template based
Circadian Activity Rhythms
Nurse’s station monitoring

Embedded displays
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Depression Detection and
Monitoring

 Multi-modal

e Passive

 Combines Objective and Subjective
Measures

University of Virginia
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Patient Display C%rlzgll\g/rs

Depression Inference

I 1 VINY II

Eating Sleep Quality Movement Mood Weight Gain/Loss

//? 1 ‘\\

Motion and
Contact

Sleep Data PHQ-9 Acoustic Weight
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Patient Health Questionnaire

In the past 2 weeks have you had any of the following problems:

&

Begin l
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Little interest or pleasure in doing things

Not at all Mora than half the days  Nearly every day




AlarmNET Caregiver

Lois Peters ol

Patient: Lois Peters, 83

Medical History:
Chronic Major Depression

moderate

22

clean stable good active

Sleeping Quality Hygeine Level PHQ Score Weight Eating Social Level

_ X . last taken 123 lbs
terminal insomnia 2 weeks ago

3 meals/day

University of Virginia



AlarmGate SW

on stargate
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Interactive, Embedded Query System
— Peer to peer

Streams — define, discover and share
Virtual sensors — discover and share
Devices added/deleted

Optional Modules

Location Transparency

Ul - Developers, Domain Experts, Users
Privacy and Security

A. Wood, L. Selavo, J. Stankovic, SenQ: An Embedded Query System
For Streaming Data in Heterogeneous Interactive Wireless Sensor Networks,

DCOSS, 2008.
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4 SenQL Declarative
*  Query Language
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Sensor Data Sampling &
Processing

| &
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Sensor Data Sampling &
Processing

e Virtual Sensors

— users fuse streams to
make new sensors

— sensor drivers can
recursively invoke SenQ

Virtual Fall Sensor

———————————— Send

! . | Body Position
[+ : Logic ™
__IE;,-E] _____ Pulse

Trunk Accel -| CLimb Accel -"’_‘

dataReady

[ EventSensor ]
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SenQL Declarative
Query Language
Query Management
and Data Storage
Query Processing and
Network Messaging

Query Privacy Power Database
Manager || Manager || Manager|| Interface

AMSecure Audit Log || Authentication

PhoenixSource || Routing || Client Manager

Sensor Network IP Network

Sensor Sampling
and Processing

Sensor Data
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22 patients

3 months to 1 year

/ males; 15 females

Ages 49-93

All ambulatory

Weekday; weekend; seasonal

Eliminate times when not in facility
Learning - 2-3 weeks of normal behavior

University of Virginia



Circadian activity rhythms (min)
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 Examples

— Retroactively analyzed the anomalies
» Detected “depression” — much more time in bed
» Detected increased urination at night

» Detected different behavior upon return from
hospitalization

G. Virone, et. al., Behavioral Patterns of Older Adults In Assisted Living,
IEEE Transactions on Information Technology in Biomedicine, Vol. 12,
No. 3, May 2008.

University of Virginia



<

%
3
s
=

e Wireless Health
— Body Sensor Networks
— Environmental and AR Networks

e Easy to Modify over Time

— Incorporate new technology as it becomes
available

— Adapt as medical conditions change
* Protects Privacy

University of Virginia
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“It appears to be some kind of wireless technology.”
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e Data Association (multi-person homes) — new height
sensor

 Run Time Assurance — safety
 Robust AR

e Scaling

« Fall Detection

e BSN
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