The Challenge of the Multicores

FRAN ALLEN allen@watson.ibm.com

Seoul National University March 12, 2010

Topics

- The Multicore Challenge
- Meeting the Multicore Challenge
- Closing Remarks and Challenges

What Is The Challenge and Why Does It Matter?

Computers are hitting a performance limit!

 "The biggest problem Computer Science has ever faced." John Hennessy

Peak Performance Computers by Year

An Idealized Supercomputer

A Problem

- Transistors continue to shrink
- More and more transistors fit on a chip
- The chips run faster and faster
- Resulting in HOT CHIPS!

Transistor Performance Stops Growing as Fast

Solution: Multicores and Software Parallelism??

- Simpler, slower, cooler processors (multicores)
- More processors on a chip
- Software (and users) organize tasks to execute in parallel on the processors
- Parallelism will provide the performance!

2007 Multicore Predictions ala Moore's Law

- The number of cores will double every 18 24 months
 - 2007 8 cores on a chip
 - 2009 16 cores
 - 2013 64 cores
 - 2015 128 cores
 - 2021 1k cores

Real Performance will Scale with the number of cores????

Parallelism is the new challenge

- High performance computing applications and computers have long used parallelism for performance.
- Current software cannot provide the parallelism needed
- Users can't either

A Deeper View of the Multicore Challenge

The 15B transistor chip will be feasible in 10-12 years!!

- 1. What will the computer architecture look like?
- 2. Can users enable code for the new parallel systems?
- 3. Can automatic parallelizing compilers deliver the parallel performance inherent in the problem solution?
- 4. Do we need new languages, new computational models, radically different compilers and software stacks?
- 5. Are new data management optimizations the low hanging fruit?

Topics

- The Multicore Challenge
- Meeting the Multicore Challenge
- Final Comments and Challenges

Software and CS Recommendations:

- Automatic parallelism and optimization
- Very high level, domain specific languages
- Eliminate C, JAVA.... as general purpose languages
- Automatic and dynamic optimization of data locality, movement, organization, ownership,
- New formal models of parallelism
- Recast compilers

Hardware and Systems Recommendations

- Influence the architects
 - Keep the architecture simple
 - Eliminate caches
- Balance goals
 - User productivity
 - Application performance
 - System integrity
- Enable bold thinkers and high risk projects

Topics

- The Multicore Challenge
- Meeting the Multicore Challenge
- Final Comments and Challenges

The Hardware Solution to Parallelism!

Strengthen Computer Science

- In a talk on "Understanding Science through the Lens of Computation", Dick Karp said:
 - The algorithmic world view is changing the mathematical, natural, social, and life sciences.
 - Computer Science is placing itself at the center of scientific discourse and exchange of ideas. And this is only the beginning.
- Computer Science: the Queen of the Sciences!

Breaking News (HPC: March 4, 2010)

- 2009 Sandia study on key algorithms for deriving knowledge from large data sets running on multicores:
 - ♦ 2 4 cores → significantly faster
 - \star 4 8 cores \rightarrow some increase
 - ♦ > 8 cores → speed decreases
 - ♦ 16 cores → barely as well as 2 cores
 - ⇒ > 16 cores → steep decline in speed
- New multicore processors are coming on the market

HOW FAST WILL YOUR PROGRAMS RUN?

Solve the Performance Challenge

- "The biggest problem Computer Science has ever faced." John Hennessy
- "The best opportunity Computer Science has to improve user productivity, application performance, and system integrity." Fran Allen

End Note

"The fastest way to succeed is to double your failure rate." – T. J. Watson, Sr.

END OF TALK

START OF A NEW ERA IN COMPUTING AND COMPUTER SCIENCE!