From Separation Logic to Systems Software

Peter O’Hearn, Queen Mary

Based on work of the Spacelnvader team: Cristiano
Calcagno, Dino Distefano, Hongseok Yang, and me

Special thanks to our SLAyer colleagues (MSR):
Josh Berdine, Byron Cook

Talk at Seoul National Univ, | | May 2009

Things like even software verification, this has been

the H
decaca
exam

oly Grail of computer science for many
es but now in some very key areas, for

tools
and h

ole, driver verification we're building
that can do actual proofs about the software
ow It works In order to guarantee reliability.

Bill Gates, WINHEC conference, 2002

Some Context

» Since 2000, striking progress in automatic program proving. E.g.:

» SLAM: Protocol properties of procedure calls in device drivers,
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

» ASTREE: no run-time errors in Airbus code

Some Context

» Since 2000, striking progress in automatic program proving. E.g.:

» SLAM: Protocol properties of procedure calls in device drivers,
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock

» ASTREE: no run-time errors in Airbus code

» The Missing Link

» ASTREE assumes: no dynamic pointer allocation
» SLAM assumes: memory safety
» Wither automatic heap verification? (for substantial programs)

Some Context

» Since 2000, striking progress in automatic program proving. E.g.:
» SLAM: Protocol properties of procedure calls in device drivers,
any call to ReleaseSpinLock is preceded by a call to
AquireSpinLock
» ASTREE: no run-time errors in Airbus code

» The Missing Link

» ASTREE assumes: no dynamic pointer allocation
» SLAM assumes: memory safety
» Wither automatic heap verification? (for substantial programs)

» Many important programs make serious use of heap: Linux, Apache,
TCP/IP, 10S... but heap verification is hard.

Part |,
Basics

Separation Logic

Xl->y * yl->x

Separation Logic

Xl->y * yl->x

X y

%

Separation Logic

X|l->y

Separation Logic

yl-> x

y

/

Separation Logic

Xl->y * yl->x

X y

%

Separation Logic

Xl->y * yl->x

Separation Logic

Xl->y * yl->x

%

Separation Logic

X|l->y

Separation Logic

yl-> x

/

Separation Logic

Xl->y * yl->x

X y

%

A Substructural Logic

A AxA

I0—3 ¥ 10— 3+10—3

AxB t A

10— 3%42—5 ¥ 10— 3

An Iinconsistency: trying to be two places at once

10[->3 * 101->3

Heaplets (heap portions) as possible worlds (i.e., a kind of
modal logic)

» Add to Classical Logic:
» emp : the heaplet is empty”
» x+— y : "the heaplet has exactly one cell x, holding y"
» Ax B : "the heaplet can be divided so A is true of one partition and B
of the other”.

Heaplets (heap portions) as possible worlds (i.e., a kind of
modal logic)

» Add to Classical Logic:

» emp : the heaplet is empty”
» x — y : “the heaplet has exactly one cell x, holding y"
» Ax B : "the heaplet can be divided so A is true of one partition and B

of the other”.

» Add inductive definitions , and other more exotic things (“magic
wand”, “septraction”) as well.

Heaplets (heap portions) as possible worlds (i.e., a kind of
modal logic)

» Add to Classical Logic:

» emp : the heaplet is empty”

» x+— y : "the heaplet has exactly one cell x, holding y"

» Ax B : "the heaplet can be divided so A is true of one partition and B
of the other”.

» Add inductive definitions , and other more exotic things (“magic
wand”, “septraction”) as well.

» Standard model: RAM model
heap: N—rZ

and lots of variations (records, permissions, ownership... more later).

Algebraic Structure

We can lift o: H x H—~ H to *x: P(H) x P(H) — P(H)
he Ax B iff HhA,hB.h:hthBand
hy € Aand hg € B

emp = {e}.
» "l have a heap, and it is empty” (not the empty set of heaps)
» (P(H),*,emp) is a total commutative monoid

P(H) is (in the subset order) both

» A Boolean Algebra, and
» A Residuated Monoid

AxBC(C & ACB-—=xC

cf. Boolean Bl logic (O'Hearn, Pym)

In-place Reasoning

[(x = =) * P] [x|:=7 [(x = 7) * P]

[P (x — —)]| dispose(x) [P]

[P] x = cons(a, b) [P x(x+— a,b)] (x & free(P))

In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E) <= if E=nil then emp
else Ax,y. (E—1: x,r: y) * tree(x) * tree(y)

Example Proof:

{tree(p) A p # nil}
Ii=p—1I;, ji=p—r;
dispose(p);

{tree(i) * tree(j)}

In-place reasoning and Inductive Definitions

Example Inductive Definition:
tree(E) <= if E=nil then emp

else Ix,y. (E—1: x,r: y) % tree(x) * tree(y)

Example Proof:
{tree(p) A p # nil}
{(p—1: x",r:y") x tree(x’) * tree(y’)}
I —p—>/ Ji=p—r;
dispose(p);

{tree(i) * tree(j)}

In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E) <= if E=nil then emp
else Ax,y. (E—1: x,r: y) * tree(x) * tree(y)

Example Proof:

{tree(p) A p # nil}
{(p—1: x",r:y") x tree(x’) * tree(y’)}
I —p—>/ Ji=p—r;

{(p—1:1i,r:j) = tree(i) * tree(j)}
dispose(p);

{tree(i) * tree(j)}

In-place reasoning and Inductive Definitions

Example Inductive Definition:

tree(E) <= if E=nil then emp
else Ax,y. (E—1: x,r: y) * tree(x) * tree(y)

Example Proof:

{tree(p) A p # nil}

{(p—1: x",r:y") x tree(x’) * tree(y’)}
I —p—>/ Ji=p—r;

{(p—1:1i,r:j) = tree(i) * tree(j)}
dispose(p);

{emp * tree(/) x tree(j)}

{tree(i) * tree(j)}

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)xtree(j)}
DispTree(/);

{emp * tree()}
DispTree());

1P1CQ}
{PxR}C{Q+R}

Frame Rule

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)xtree(j)}
DispTree(/);

{emp * tree(j)}
DispTree());

1P1CQ}
{PxR}C{Q+R}

Frame Rule

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)xtree(j)}
DispTree(/);

{emp * tree(j)}
DispTree());

{emp * emp}

1P1CQ}
{PxR}C{Q+R}

Frame Rule

Extended In-place Reasoning

» Spec
{tree(p)} DispTree(p) {emp}

» Rest of proof of evident recursive procedure

{tree(i)xtree(j)}
DispTree(/);

{emp * tree(j)}
DispTree());

lemp

1P1CQ}
{PxR}C{Q+R}

Frame Rule

Part I,

Cooking a Static Analyzer

Linked Lists
List segments (list(E) is shorthand for Iseg(E, nil))

Iseg(E,F) <= if E = F then emp
else dy.E—tl:y x Iseg(y, F)

Iseg(x, t) * t—[t/: y] * list(y)

Cooking a Program Analyzer

1. Just write an interpreter. (Well, an abstract interpreter.)

2. Symbolically execute statements using in-place reasoning (all true
Hoare triples).

. Interpret while loops by using abstractin rules like
Is(x, t") = list(t") F list(x)

to automatically find loop invariants. This uses the rule of
consequence on the right to find the invariant for the while rule

{P}C{Q} QF {I NB}C{Il}
{P}C{Q"} {/}while B do {/ A —B}

. A terminating run of the interpreter will give us a proof of assertions
at all program points.

{emp}

X=nil;

while (- K
nev(y),
y =>tl = Xx;
X=Y;

}

Calculated Loop Invariant

Example

Example

{emp}

X=nil;

while (-){ x=nil Aemp
nev(y),
y =>tl = Xx;
X=y;

}

Calculated Loop Invariant

X =nil Aemp

Example

lemp
X=nil;
while (_){ x+nil

nev(y),
y >t = Xx;

X=Y,

}

Calculated Loop Invariant
X =nil Aemp
V X+t nil

V

Example

{emp}
X=nil;
while (L){ x+— x' % x"+— nil

nev(y),
y >t = Xx;

X=Y,

}

Calculated Loop Invariant
X =nil Aemp
V X+t nil

V

Example

lemp
X=nil;
while (- Is(x,nil)

new(y),
y >t = Xx;

X=Y,

}

Calculated Loop Invariant
X =nil Aemp
V X+t nil

VvV Is(x,nil)

Example

{emp}
X=nil;
while (- x — x" % Is(x’,nil)

nev(y),
y >t = Xx;

X=Y,

}

Calculated Loop Invariant
X =nil Aemp
V X+t nil

VvV Is(x,nil)

Example

lemp
X=nil;
while (- Is(x,nil)

new(y),
y >t = Xx;

X=Y,

}

Calculated Loop Invariant
X =nil Aemp
V X+t nil

VvV Is(x,nil)

Example

{emp}

X=nil;

while (- Is(x,nil)
new(y),
y >t = x;
X=Y;

}

Calculated Loop Invariant

X =nil Aemp

Fixed-point reached!

V Xr—~nil

VvV Is(x,nil)

Part lll:
A new recipe from East

London

Footprints and Small Specs

» Semantics: Program P, with
» P h=h or P,h= memfault

» Footprint (Input Footprint)

h € Foot(P) < P, h % memfault (Safety)
A YVh C h. P, h= memfault (Minimality)

» Small Spec of P: [Foot(P)] P [Post(P)]

We achieve compositionality,

by aiming for ~small specs”

that describe the footprint

We achieve compositionality,

by aiming for ~small specs”

that describe the footprint

An Example Small Spec

{tree(p)} DispTree(p) {emp}

tree(E) <= if E=nil then emp
else Ix,y.(E—1: x,r: y) % tree(x) * tree(y)

The “smallness’ of the tree assertion

tree(E) <= if E=nil then emp
else Ax,y. (E—1: x,r: y) * tree(x) * tree(y)

» tree(E) is true of

The “smallness’ of the tree assertion

tree(E) <= if E=nil then emp
else Ax,y. (E—1: x,r: y) * tree(x) * tree(y)

» tree(E) is false of

The “smallness’ of the tree assertion

tree(E) <= if E=nil then emp
else Ax,y. (E—1: x,r: y) * tree(x) * tree(y)

» and even false of

"
®

The Al Frame Problem
(McCarthy-Hayes, 1969)

When you specify an action {P}act{Q}, an inordinate

amount of effort is needed to say what “act” DOSN’T
do.

{ not(holding(block)) } pick-up(block) { holding(block) }
{ holding(block?2) } pick-up(block) { holding(block2) } ???

Some Philosophical Problems from the Standpoint of Artifical Intelligence,
McCarthy-Hayes, Machine Intelligence, 1969

The Al Frame Problem
(McCarthy-Hayes, 1969)

When you specify an action {P}act{Q}, an inordinate

amount of effort is needed to say what “act” DOSN’T
do.

{ not(holding(block)) } pick-up(block) { holding(block) }
{ holding(block2) } pick-up(block) { holding(block2) } 72

Some Philosophical Problems from the Standpoint of Artific
McCarthy-Hayes, Machine Intelligence, 1969

A Small Spec, and a Small Proof

» Spec
[tree(p)] DispTree(p) [emp]

» Proof of body of recursive procedure

tree(i)xtree())]
DispTree(/);

emp * tree(J)]
DispTree());
[emp]

{PrCid]
{PxR}C{QxR}

Frame Rule

A Small Spec, and a Small Proof

» Spec
[tree(p)|] DispTree(p) [emp]

» Proof of body of recursive procedure

tree(i)xtree())]
DispTree(/);

emp * tree(J)]
DispTree());
[emp]

{P}C{Q}
(P+RYC{Q*R}

Frame Rule

Extensions of the entailment question I: Frame Inference

Extensions of the entailment question I: Frame Inference

Extensions of the entailment question I: Frame Inference

tree(/) x tree(j) F tree(i)*7?

Extensions of the entailment question I: Frame Inference

tree(/) x tree(j) F tree(/)* tree(/))

Extensions of the entailment question I: Frame Inference

x #Znil Alist(x) F Ix'. x— x"*7

Extensions of the entailment question I: Frame Inference

x #Znil Alist(x) F 3Ix. x+— x"xlist(x))

Extensions of the entailment question I: Frame Inference

A Small Spec, and a Small Proof

» Spec
[tree(p)|] DispTree(p) [emp]

» Proof of body of recursive procedure

[tree(i)xtree())]
DispTree(/);
lemp * tree())]
DispTree());
[emp]

{PIC{Q}
(P+RYC{Q+R} Frame Rule

Wait a minute, where are you
gonna get preconditions! How
to get started!

Wait a minute, where are you
gonna get preconditions! How
to get started!

Oh, don’t tell me, that sounds...
out of this world...

Abductive Inference
(Charles Peirce, circa 1900, writing
about the scientific process)

“Abduction is the process of forming an explanatory hypothesis.
It is the only logical operation which introduces any new idea”

“A man must be downright crazy to deny that science has made many
true discoveries. But every single item of scientific theory which
stands established today has been due to Abduction.”

The Collected Papers of Charles Sanders Peirce, Volume V,
Pragmatism and Pragmaticism

Extensions of the entailment question Il: abduction

!Calcagno, Distefano, O'Hearn, Yang, POPL'09

Extensions of the entailment question Il: abduction

x+—nilx? F list(x) * list(y)

» We call the ? here an “anti-frame” .1

!Calcagno, Distefano, O'Hearn, Yang, POPL’'09

Extensions of the entailment question Il: abduction

x —nil « list(y) b+ list(x) * list(y)

» We call the ? here an “anti-frame” .1

!Calcagno, Distefano, O'Hearn, Yang, POPL’'09

Extensions of the entailment question Il: abduction

X—y*x? F x+— axlist(a)

» We call the ? here an “anti-frame” .1

!Calcagno, Distefano, O'Hearn, Yang, POPL’'09

Extensions of the entailment question Il: abduction

xi—yx(y=aAlist(a)) b x— axlist(a)

» We call the ? here an “anti-frame” .1

!Calcagno, Distefano, O'Hearn, Yang, POPL’'09

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0;
foo(x,y);
return(x); }

Abductive Inference:

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0;
foo(x,y);
return(x); }

Abductive Inference:

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0; x—0
foo(x,y);
return(x); }

Abductive Inference:

Given Summary/spec: [list(x) * list(y)|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0; x—0
foo(x,y);
return(x); }

Abductive Inference: x+— 0 % ? = list(x) * list(y)

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0; x—0
foo(x,y);
return(x); }

Abductive Inference: x +— 0% list(y) F list(x) * list(y)

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0; x—0
foo(x,y);
return(x); }

Abductive Inference: x +— 0% list(y) F list(x) * list(y)

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0; x— 0
foo(x,y); |iSt(X)
return(x); }

Abductive Inference: x +— 0% list(y) F list(x) * list(y)

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *x;
x=malloc(sizeof(list-item));
x—tail = 0; x— 0
foo(x,y); |iSt(X)

return(x); } list(ret)

Abductive Inference: x +— 0% list(y) F list(x) * list(y)

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { list(y)(Inferred Pre)

list-item *x;
x=malloc(sizeof(list-item));

x—tail = 0; x—0
foo(x,y); |iSt(X)

return(x); } list(ret)(Inferred Post)

Abductive Inference: x +— 0% list(y) F list(x) * list(y)

Given Summary/spec: [list(x) * list(y)]|foo(x, y)[list(x)]

Bi-Abduction

A x 7anti-frame F B x 7frame

» Generally, we have to solve both inference questions at each procedure
call site (and each heap dereference)

» It lets us do a bottom-up analysis: callees before callers. Generates
pre/post specs without being given preconditions or postconditions.

Experimental Results

STRESS:specs should fit
together

swmall example fo test

how accurate the specs
are

STRESS:specs should fit
together

swmall example fo test

Experimental Results [Eas

x Small examples

x Recursive procedures for traversing/deleting/inserting
in acyclic/cyclic nested lists

n - Veaium:examples

x Firewire cevice driver (10K LOC) found specs for 121
procedures out of 121

Abductor on larger programs

Num.
Program Procs Time (sec)

Linux 2.6.25.4 101330 6869.09
Gimp 2.4.6 15114 3601.16
OpenSSL 0.9.8g 4818 605.36
Sendmail 8.14.3 684 184.50
Apache 2.2.8 1870 294.67
OpenSSH 5.0 1135 142.56
Spin 5.1.6 357 772.82

Confessions/Admissions

sSound wrt “ldealized” model (e.g., no concurrency...)

Don’t
SPECS

Lots O
In join,

Timeo

Hard t

KNow. good general criterion:for “quality” of
(anecdotal evidence, eyeball some examples)

f-heuristics (in-abduction; and in abstraction, and
and in predicate discovery...)

ut i1s involved

hings in extra 40% procs in Linux

A x 7anti-frame F B x 7frame

» Bi-abduction fits conceptually very naturally with the ideas of small
specs that talk about footprints

» |t leads to an extreme modular shape analysis

» Maybe it can be used for other things too...

