Timing Analysis and Timing Predictability

Reinhard Wilhelm
Saarland University
Saarbriicken
Germany

AbSI nt http://predator-project.eu/

Angewandte Informatik GmbH

SAARLANDES

Hard Real-Time Systems

+ Embedded controllers are expected to finish
their tasks reliably within time bounds.

» Task scheduling must be performed.

» Essential: upper bound on the execution times of
all tasks statically known (Commonly called the
Worst-Case Execution Time (WCET)).

» Timing Analysis provides the abstraction for
Scheduling

Deriving Run-Time Guarantees for
Hard Real-Time Systems

Given:
1. required reaction time,
2.a software to produce the reaction,

3. a hardware platform, on which to execute
the software.

Derive: a guarantee for timeliness

e

Structure of the Talk

Timing Ana
Timing Ana
the overal

ysis - the Problem

ysis - a Sketch of our Approach
approach, tool architecture

cache analysis
pipeline analysis
Results and experience

Architectural and Timing Predictability

predictability of cache replacement strategies
extending predictability concepts beyond caches
going multi-core

Conclusion

What does Execution Tima Donond on?
Different inputs = different

paths through the cfg

* the inpu’r - this has always/ qused by caches, pipelines,
been so and will remain so speculation etc.

oL , Diff. initial states = diff.
- the initial execution stateN :
the platform - this is

Explosion of the space of

(relatively) new, inputs and initial states
- interferences from the — measurement infeasible
environment - this depenady

whether the system design sl
dmits it (£ interference as seen
aamits 1T \preemptive from analyzed task,

scheduling, interrupts). ignored in this talk.

Modern Hardware Features

* Modern processors increase performance by using:
Caches, Pipelines, Branch Prediction,
Speculation

* These features make bounds computation difficult:
Execution times of instructions vary widely

- Best case - everything goes smoothly: no cache miss,
operands ready, needed resources free, branch correctly
predicted

- everything goes wrong: all loads miss the
cache, resources needed are occupied, operands are not
ready

- Span may be several hundred cycles

Access Times

X=a+b;

MPC 5xx PPC 755

Execution Time depending on Flash Memory Execution Time (Clock Cycles)
(Clock Cycles)

“ . ’
0 Wait 1 Wait External
Cycles Cycle (6,1,1,1,..) Best Case Worst Case

Notions in Timing Analysis

Hard or
impossible to
determine

@ worst-case performance
£
= _ worst-case guarantee
@)
o The actual WCET
= ini t be found '
S| Lower Minimal Lrpuser SOS#(;\edor Maximal Upper
Q9 L observed PP observed e ;1
=| timing |IBCET " " WCET|timing
3| pound execution execution bound
T time NI\I! h time
0 <—— measured execution times ——— \me
< possible execution times >

A

timing predictability

Determine
upper bounds
instead

High-Level Requirements for
Timing Analysis
» Upper bounds must be safe, i.e. not

underestimated

» Upper bounds should be tight, i.e. not far
away from real execution times

» Analogous for lower bounds
* Analysis effort must be tolerable

-10 -

Execution Time is History-Sensitive

Contribution of the execution of an
instruction to a program's execution time

+ depends on the execution state, e.g. the
time for a memory access depends on the
cache state

* the execution state depends on the
execution history, i.e., cannot be
determined in isolation

-11 -

Our Approach

+ Static Analysis of Programs
for their behavior on the \/
Execution platform

+ Static program analysis ‘—J

computes invariants about
the set of possible !
execution states at all

program points load a

always a cache hit?

Timing Accidents and Penalties

Timing Accident - cause for an increase
of the execution time of an instruction

Timing Penalty - the associated increase

+ Types of timing accidents
- Cache misses
- Pipeline stalls
- Branch mispredictions
- Bus collisions
- Memory refresh of DRAM
- TLB miss

- 2 =

~13 -

Deriving Run-Time Guarantees

* Our method and tool derives Safety
Properties from these invariants :
Certain timing accidents will never happen
Example: At program point p, instruction
fetch will never cause a cache miss.

- The more accidents excluded, the lower
the upper bound.

Murphy's
invariant
| |
| I
Fastest Variance of execution times Slowest

Overall Approach: Natural Modularizatior”

1. Control-Flow Analysis
» determines infeasible paths,
» computes loop bounds,
* missing information as annotation by user
2. Micro-architecture Analysis:
+ Uses static program analysis
+ Excludes as many Timing Accidents as possible
* Determines upper bounds for basic blocks

3. Worst-case Path Determination
* Maps control flow to integer linear program

* Determines upper bound for the whole program
and an associated path

Tool Architecture @ Legend:
Executable @D
CEG Re- } [Phase |

construction

Control-flow
Graph

. Value Loop Bound Control-flow
Abstract Iﬂfe/"p/"efaf'IOﬂS Analysis] Analysis } { Analysis

Annotated
CFG

Micro- Global
architectural B.a SI.C Blm:,k Bound

Analysis Timing Info

Abstract Interpretation & ,Z reger Linear
rogramming

Analysis

-16 -

Caches: How the work

CPU wants to read/write at memory address a
sends a for ato the bus

Cases:

* Block m containing ain the cache (17):
request for ais served in the next cycle

» Block mnot in the cache ():
mis transferred from main memory to the cache,
m may some block in the cache,
request for ais served asap while transfer still
continues

+ Several . LRU, PLRU,
FIFO.,..
determine which line to replace

-19 -

Cache Analysis

How to statically precompute cache contents:

* Must Analysis:
For each program point (and calling context), find
out which blocks are in the cache

* May Analysis
For each program point (and calling context), find
out which blocks may be in the cache
Complement says what is not in the cache

-20-

Must-Cache and May-Cache- Information

* Must Analysis determines safe
information about cache hits

Each predicted cache hit reduces upper
bound

* May Analysis determines safe information
about cache misses

Each predicted cache miss increases lower
bound

Cache with LRU Replacement: Transfer for must:
concrete —

(processor)

young

l a8 |LRU has a
old notion of AGE

— | X || N
X< [N |»

A
Z / S
S YA
X = X
t -t
S
abstract —
) {x} 1S7
(analysis)) >< X}
{s t} - | {t}
{y} - | {y}
S

- 22 -

Cache Analysis: Join (must)

18}

1}

{1C 1}

1d}

Join (must)

{C}
{e}
18}
{d}

“inter_section
+ maximal age”

1}

1}
13}

{d

Interpretation: memory block ais
definitively in the (concrete) cache

=>always hit

Cache with LRU Replacement: Transfer for may’

/-\
concrete Z — [“young”
y Z
X ‘ y l Age
t X old
/_\
Z / S
) Z
X — X
t - t
S
/_\
abstract [IX 7} [{s]
13 >< 2]
{s.1} - {}
{y} — L {y.t}
S

Cache Analysis: Join (may)

18}

1}

{1C 1}

1d}

Join (may)

{C}

{e}

18}

{d}

o~

13,C }
{ e}
{f}
1d}

“union
+ minimal age”

- 24

Pipelines

Inst 1 Inst 2

Fetch

Fetch

WB

Execute

oo

Inst 3

Execute

Decode

Inst 4

-25-

Ideal Case: 1 Instruction per Cycle

WB Execute Decode
WB Execute
WB

- 26 -

CPU as a (Concrete) State Machine

* Processor (pipeline, cache, memory, inputs)
viewed as a big state machine,
performing transitions every clock cycle

» Starting in an initial state for an
instruction,

transitions are performed,

until a final state is reached:

- End state: instruction has left the pipeline
- # transitions: execution time of instruction

- 27 -

Pipeline Analysis

+ simulates the concrete pipeline on
abstract states

» counts the number of steps until an
instruction retires

* non-determinism resulting from
abstraction and timing anomalies require
exhaustive exploration of paths

- 28 -

Integrated Analysis: Overall Picture

Fixed point iteration over Basic Blocks (in
context) {s; s, s;}abstract state

Cyclewise evolution of processor model
for instruction

Basic Block S1 S S3

I NN
\/\/
TN /AN

-29-

Implementation

+ Abstract model is implemented as a DFA
» Instructions are the nodes in the CFG
+ Domain is powerset of set of abstract states

» Transfer functions at the edges in the CFG
iterate cycle-wise updating each state in the
current abstract value

e max{# iterations for all states} gives bound

- From this, we can obtain bounds for basic
blocks

-30-

Classification of Pipelined Architectures

» Fully timing compositional architectures:
- ho timing anomalies.

- analysis can safely follow local worst-case paths only,
- example: ARM7.
» Compositional architectures with constant-

bounded effects:

- exhibit timing anomalies, but no domino effects,
- example: Infineon TriCore
Non-compositional architectures:

- exhibit domino effects and timing anomalies.

- timing analysis always has to follow all paths,

- example: PowerPC 755

e

-35-

Structure of the Talk

Timing Ana
Timing Ana
the overal

ysis - the Problem

ysis - a Sketch of our Approach
approach, tool architecture

cache analysis
pipeline analysis
Results and experience

Architectural and Timing Predictability

predictability of cache replacement strategies
extending predictability concepts beyond caches
going multi-core

Conclusion

- 36 -

aiT WCET Analyzer

IST Project DAEDALUS final
review report: |

"The AbsInt tool is probably the
best of its kind in the world and it

is justified to consider this result
as a breakthrough.”

Several time-critical subsystems of the Airbus A380
have been certified using aiT;

aiT is the only validated tool for these applications.

cache-miss penalty

over-estimation

-37-

Tremendous Progress 200

during the past 12 Years
The explosion of penalties has been compensated
by the improvement of the analyses!
/ .
25 30-50%
20-30% ~— / >
— 15%
10%
4
1995 2002 2005

Lim et al. Thesing et al. Souyris et al.

e

- 38 -

Structure of the Talk

Timing Ana
Timing Ana
the overal

ysis - the Problem

ysis - a Sketch of our Approach
approach, tool architecture

cache analysis
pipeline analysis
Results and experience

Architectural and Timing Predictability

predictability of cache replacement strategies
extending predictability concepts beyond caches
going multi-core

Conclusion

-39-

Timing Predictability

Experience has shown that the precision of results
depend on system characteristics

» of the underlying hardware platform and
+ of the software layers

- We will concentrate on the influence of the HW
architecture on the predictability

What do we intuitively understand as
Predictability?

Is it compatible with the goal of optimizing
average-case performance?

Making Life Easier
PREDATOR CCO

Goal: Reconcile (average-case) performance with
(worst-case) predictability.

Simplify the semantics, more precisely the
architecture, if it is foo complex:

* hard to provide sound timing analyses for ever
more complex architectures,

* they are optimized for the wrong targeft,
anyway.

Scalability of analyses and precision of the results
are often correlated.

- 41 -

Objectives of PREDATOR

Identify good points in the 3-dimensional space of
» predictability (of the worst case),
» performance (in the average case),
- efficiency of verification methods.

Develop desigh methods for timing-predictable and
performant systems

- 42 -

Processor Features of the MPC 7448
(just to show how bad things are getting)

+ Single e600 core, 600MHz-
1,76Hz core clock

« 32 KB L1 data and instruction
caches

- 1 MB unified L2 cache with ECC

* Up to 12 instructions in |
IHSTI"UCTIOH queue CFX SFXO SFX1 SFX2 -

» Up to 16 instructions in parallel
execution

- 7 stage pipeline
- 3 issue queues, GPR, FPR,
AltiVec

- 11 independent execution units

Processor Features (cont.) e

* Branch Processing Unit
- Static and dynamic branch prediction

- Up to 3 outstanding speculative branches
- Branch folding during fetching

* 4 Integer Units

- 3 identical simple units (IUls), 1 for complex operations (IU2)
* 1 Floating Point Unit with 5 stages

4 Vector Units

- 1 Load Store Unit with 3 stages

- Supports hits under misses

- 5 entry L1 load miss queue

- b entry outstanding store queue

- Data forwarding from outstanding stores to dependent loads

- Rename buffers (16 GPR/16 FPR/16 VR)

» 16 entry Completion Queue
- Out-of-order execution but In-order completion

Challenges and Predictability

» Speculative Execution

- Up to 3 level of speculation due to unknown branch
prediction

» Cache Prediction

- Different pipeline paths for L1 cache hits/misses
- Hits under misses

- PLRU cache replacement policy for L1 caches

* Arbitration between different functional units

- Instructions have different execution times on IU1
and TU2

» Connection to the Memory Subsystem
- Up to 8 parallel accesses on MPX bus
» Several clock domains

- L2 cache controller clocked with half core clock
- Memory subsystem clocked with 100 - 200 MHz

- 44 _

Architectural Complexity 45
implies
Analysis Complexity

Every hardware component whose state has
an influence on the timing behavior

* must be conservatively modeled,

» contributes a multiplicative factor to the
size of the search space

Predictability of
Cache Replacement Policies

- 46 -

Uncertainty in Cache Analysis

\
___-="2. Need to combine information
¥ 3. Cannotresolve address of x...
cadf | freaafa” 4. IMprecise analysis domain/
| update functions
% "

oy — Need to recover information:
l Predictablility = Speed of Recovery

_48 -

Metrics of Predictability:
evict & fill

Two Variants:
M = Misses Only
HM

Seq:{a b ¢ d e f g h)

Meaning of evict/fill - I

» Evict: may-information:

- What is definitely not in the cache?
- Safe information about Cache Misses
- Fill: must-information:

- What is definitely in the cache?

- Safe information about Cache Hits

- 49 -

-5l -

Replacement Policies

* LRU - Least Recently Used
Intel Pentium, MIPS 24K/34K

* FIFO - First-In First-Out (Round-robin)
Intel XScale, ARM9, ARM11

* PLRU - Pseudo-LRU
Intel Pentium IT+ITII+IV, PowerPC 75x
* MRU - Most Recently Used

52 -

MRU - Most Recently Used

MRU-bit records whether line was recently
used

Pseudo-LRU

Tree maintains order:

Problem: accesses ..rejuvenate”
neighborhood

- 53 -

-H4 -

Results: tight bounds

f(k) —e(k) <k
INn general

Generic examples prove tightness.

-hH -

Results: instances for k=48

- k=4] k—8

| Policy fM eHM

M

4

4 7 11

6 00/4 6 00/8 14 oo/12 00/20
5 5 12 15

Question: 8-way PLRU cache, 4 instructions per line
Assume equal distribution of instructions over

256 sefts:
How long a straight-line code sequence is needed to
obtain precise may-information?

T

LRU has Optimal Predictability,
so why is it Seldom Used?

* LRU is more expensive than PLRU, Random, etc.

- But it can be made fast

- Single-cycle operation is feasible [Ackland JSSCOOQ]
- Pipelined update can be designed with no stalls

+ Gets worse with high-associativity caches
- Feasibility demonstrated up to 16-ways

* There is room for finding lower-cost highly-
predictable schemes with good performance

-57 -

Extended the Predictability Notion

* The cache-predictability concept applies
to all cache-like architecture components:

- TLBs, BTBs, other history mechanisms

- Tt does not cover the whole architectural
domain.

- 58 -

The Predictability Notion

Unpredictability
* is an inherent system property

* limits the obtainable precision of static predictions about
dynamic system behavior

Digital hardware behaves deterministically (ignoring
defec’rs, thermal effects etc.)

» Transition is fully determined by current state and input

- We model hardware as a (hierarchically structured,
sequentially and concurrently composed) finite state
machine

» Software and inputs induce possible (hardware)
component inputs

-ho -

Uncertainties About State and Input

+ If initial system state and input were known only
one execution (time) were possible.

+ To be safe, static analysis must take into account
all possible initial states and inputs.

* Uncertainty about state implies a set of starting
states and different transition paths in the
architecture.

» Uncertainty about program input implies possibly
different program control flow.

* Overall result: possibly different execution times

- 60 -

Source and Manifestation of
Unpredictability

» "Outer view" of the problem: Unpredictability
manifests itself in the variance of execution
Time

» Shortest and longest paths through the
automaton are the BCET and WCET

* "Inner view" of the problem: Where does the
variance come from?

- For this, one has to look into the structure of
the finite automata

-61-

Connection Between Automata and Uncertainty

* Uncertainty about state and input are
qualitatively different:

+ State uncertainty shows up at the "beginning” =
number of possible initial starting states the
automaton may be in.

+ States of automaton with high in-degree lose
this initial uncertainty.

» Input uncertainty shows up while "running the
automaton”.

* Nodes of automaton with high out-degree
infroduce uncertainty.

- 62 -

State Predictability - the Outer View

Let 7(i;s) be the execution time with component input /
starting in hardware component state s.

T(i 51
State predictability : = min min (/. 1)

Component Input / State s;.5; T(f . So)

The range is in [0::1], 1 means perfectly timing-predictable

The smaller the set of states, the smaller the variance
and the larger the predictability.

The smaller the set of component inputs to consider,
the larger the predictability.

Variability of Execution Times

» often caused by the interference on
shared resources

- instructions interfer on the caches
- bus masters interfer on the bus
- several threads interfer on shared caches

- 64 -

- 65 -

PROMPT Design Principles
for Predictable Systems

- reduce interference on shared resources in
architecture design

» avoid introduction of interferences in mapping
application to target architecture

Applied to Predictable Multi-Core Systems

* Private resources for non-shared components of
applications

+ Deterministic regime for the access to shared
resources

- 66 -

Conclusions

* The determination of safe and precise upper

bounds on execution times by static program

analysis and Integer Linear Programming

essentially solves the problem.

Ongoing work:

- Incorporation of preemption-caused costs,

- timing analysis of heap-manipulating programs,

- semi-automatic derivation of abstract processor
models

* Precision greatly depends on predictability

properties of the system

- notion needs further clarification, criteria to be used
in design

- 67 -

Relevant Publications

C. Ferdinand et al.: Cache Behavior Prediction by Abstract Interpretation.
Science of Computer Programming 35(2): 163-189 (1999)

C. Ferdinand et al.: Reliable and Precise WCET Determination of a Real-Life
Processor, EMSOFT 2001

R. Heckmann et al.: The Influence of Processor Architecture on the Design and
the Results of WCET Tools, IEEE Proc. on Real-Time Systems, July 200

St. Thesing et al.: An Abstract Interpretation-based Timing Validation of Hard
Real- Time Avionics Software, IPDS 2003
[2.070'/2/@/@, R. Wilhelm: Design for Timing Predictability, Real-Time Systems, Dec.

R. Wilhelm: Determination of Execution Time Bounds, Embedded Systems
Handbook, CRC Press, 2005

St. Thesing: Modeling a System Controller for Timing Analysis, EMSOFT 2006

J. Reineke et al.: Predictability of Cache Replacement Policies, Real-Time
Systems, Springer, 2007

R. Wilhelm et al.: The Determination of Worst-Case Execution Times - Overview
of the Methods and Survey of Tools. ACM Transactions on Embedded Computing
Systems (TECS) 7(3), 2008.

R.Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, accepted by IEEE TCAD

	Foliennummer 1
	Hard Real-Time Systems
	Deriving Run-Time Guarantees for �Hard Real-Time Systems
	Structure of the Talk
	What does Execution Time Depend on?
	Modern Hardware Features
	Foliennummer 7
	Notions in Timing Analysis
	High-Level Requirements for Timing Analysis
	Execution Time is History-Sensitive
	Our Approach
	Timing Accidents and Penalties
	Deriving Run-Time Guarantees
	Overall Approach: Natural Modularization
	Foliennummer 15
	Caches: How the work
	Cache Analysis
	Must-Cache and May-Cache- Information
	Cache with LRU Replacement: Transfer for must
	Cache Analysis: Join (must)
	Cache with LRU Replacement: Transfer for may
	Cache Analysis: Join (may)
	Pipelines
	CPU as a (Concrete) State Machine
	Pipeline Analysis
	Integrated Analysis: Overall Picture
	Implementation
	Classification of Pipelined Architectures
	Structure of the Talk
	Foliennummer 36
	Tremendous Progress�during the past 12 Years
	Structure of the Talk
	Timing Predictability
	Making Life Easier
	Objectives of PREDATOR
	Processor Features of the MPC 7448�(just to show how bad things are getting)
	Processor Features (cont.)
	Challenges and Predictability
	Architectural Complexity �implies�Analysis Complexity
	Predictability of �Cache Replacement Policies
	Uncertainty in Cache Analysis
	Metrics of Predictability:
	Meaning of evict/fill - I
	Replacement Policies
	MRU - Most Recently Used
	Pseudo-LRU
	Results: tight bounds
	Results: instances for k=4,8
	LRU has Optimal Predictability,�so why is it Seldom Used?
	Extended the Predictability Notion
	The Predictability Notion
	Uncertainties About State and Input
	Source and Manifestation of Unpredictability
	Connection Between Automata and Uncertainty
	State Predictability – the Outer View
	Variability of Execution Times
	PROMPT Design Principles �for Predictable Systems
	Conclusions
	Relevant Publications

