
Timing Analysis and Timing Predictability

Reinhard

Wilhelm
Saarland University

Saarbrücken
Germany

http://predator-project.eu/

- 2 -

Hard Real-Time Systems
•

Embedded controllers are expected to finish
their tasks reliably within time bounds.

•

Task scheduling must be performed.
•

Essential: upper bound on the execution times

of

all tasks statically known (Commonly called the
 Worst-Case Execution Time (WCET)).

•

Timing Analysis provides the abstraction for
Scheduling

- 3 -Deriving

Run-Time

Guarantees

for
 Hard Real-Time

Systems

Given:
1.

required

reaction

time,

2.

a software

to produce

the

reaction,
3.

a hardware

platform, on which

to execute

 the

software.
Derive: a guarantee

for

timeliness.

- 4 -

Structure of the Talk
1.

Timing Analysis –

the Problem

2.

Timing Analysis –

a Sketch of our Approach
•

the overall approach, tool architecture

•

cache analysis
•

pipeline analysis

3.

Results and experience
4.

Architectural and Timing Predictability

•

predictability of cache replacement strategies
•

extending predictability concepts beyond caches

•

going multi-core
5.

Conclusion

- 5 -

What does Execution Time Depend on?

•

the input

–

this has always
been so and will remain so,

•

the initial execution state

of
the platform –

this is

(relatively) new,
•

interferences from the
environment

–

this depends on

whether the system design
admits it (preemptive
scheduling, interrupts).

Caused by caches, pipelines,
speculation etc.

Diff. initial states ⇒ diff.
architectural

paths

Explosion of the space of
inputs and

initial states

⇒

measurement infeasible

“external”
 interference as seen

from analyzed task,
ignored in this talk.

Different inputs ⇒

different
paths through the cfg

- 6 -

Modern Hardware Features

•

Modern processors increase performance by using:
Caches, Pipelines, Branch Prediction,
Speculation

•

These features make bounds computation difficult:
 Execution times of instructions vary widely

–

Best case

-

everything goes smoothly: no cache miss,
operands ready, needed resources free, branch correctly
predicted

–

Worst case

-

everything goes wrong: all loads miss the
cache, resources needed are occupied, operands are not
ready

–

Span may be several hundred cycles

- 7 -

Access Times

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

0

10

20

30

0 Wait
Cycles

1 Wait
Cycle

External
(6,1,1,1,...)

Execution Time depending on Flash Memory
(Clock Cycles)

Clock Cycles

0

50

100

150

200

250

300

350

Best Case Worst Case

Execution Time (Clock Cycles)

Clock Cycles

MPC 5xx PPC 755

x = a + b;

- 8 -

Notions in Timing Analysis

�������	�
��
����	��

��
��
���
��
��
��
�
���
�

�

��������

���

�������
�
�
����������
�

�

���
�
������
�����

���
�
������
�����

���������
����	������

�������	�
���	�	��

 ����	�
���
�!
�

�
������
���

 	���	�
���
�!
�

�
������
���

�
	���
��
�
����������
�

�"
�	���	������
������
��������
���
�������
�

Hard or
impossible to

determine

Determine
upper bounds

instead

- 9 -High-Level Requirements for
Timing Analysis

•

Upper bounds must be safe, i.e. not
underestimated

•

Upper

bounds

should be tight, i.e. not far
away from real execution times

•

Analogous for lower bounds
•

Analysis effort must be tolerable

- 10 -

Execution Time is History-Sensitive

Contribution

of the execution of an
instruction to a program‘s execution time

•

depends on the execution state, e.g. the
time for a memory access depends on the
cache state

•

the execution state depends on the
execution history, i.e., cannot be
determined in isolation

- 11 -

Our Approach

•

Static Analysis of Programs
 for their behavior on the

Execution platform
•

Static program analysis
computes invariants

about

the set of possible
execution states

at all

program points load a

always a cache hit?

- 12 -

Timing Accidents and Penalties
Timing Accident

–

cause for an increase

of the execution time of an instruction
Timing Penalty

–

the associated increase

•

Types of timing accidents
–

Cache misses

–

Pipeline stalls
–

Branch mispredictions

–

Bus collisions
–

Memory refresh of DRAM

–

TLB miss

- 13 -

Deriving Run-Time Guarantees

•

Our method and tool derives Safety
Properties

from these invariants :

Certain timing accidents will never happen.
 Example:

At program point p, instruction

fetch will never cause a cache miss.
•

The more accidents excluded, the lower

 the upper

bound.
Murphy’s
invariant

Fastest Variance of execution times Slowest

- 14 -

Overall Approach: Natural

Modularization
1.

Control-Flow Analysis

•

determines infeasible paths,
•

computes loop bounds,

•

missing information as annotation by user
2.

Micro-architecture Analysis:

•

Uses static program analysis
•

Excludes as many Timing Accidents as possible

•

Determines upper bounds for basic blocks
3.

Worst-case Path Determination

•

Maps control flow to integer linear program
•

Determines upper bound for the whole program
and an associated path

- 15 -

Tool Architecture

Abstract Interpretations

Abstract Interpretation Integer Linear
Programming

- 16 -

Caches: How the work
CPU wants to read/write at memory address a,

 sends a request

for a to the bus
Cases:
•

Block m containing a in the cache (hit):
request for a is served in the next cycle

•

Block

m not in the cache (miss):
 m is transferred from main memory to the cache,

m may replace

some block in the cache,
 request for a is served asap

while transfer still

continues
•

Several

replacement

strategies: LRU, PLRU,

FIFO,...
 determine

which

line to replace

- 19 -

Cache Analysis
How to statically precompute

cache contents:

•

Must Analysis:
 For each program point (and calling context), find

out which blocks are

in the cache
•

May Analysis:
For each program point (and calling context), find
out which blocks may

be in the cache

 Complement says what is not

in the cache

- 20 -

Must-Cache and May-Cache-

Information
•

Must Analysis

determines safe

information about cache hits
 Each predicted cache hit reduces upper

bound
•

May Analysis

determines safe information

about cache misses
 Each predicted cache miss increases lower

bound

- 21 -Cache with LRU Replacement: Transfer for must

z
y
x
t

s
z
y
x

s
z
x
t

z
s
x
t

concrete

(processor)

abstract

(analysis)

“young”

“old”

Age

[s]

{ x }
{ }

{ s, t }
{ y }

{ s }
{ x }
{ t }
{ y }

[s]

LRU has a
notion of AGE

- 22 -

Cache Analysis: Join (must)
{ a }
{ }

{ c, f }
{ d }

{ c }
{ e }
{ a }
{ d }

{ }
{ }

{ a, c }
{ d }

“intersection
+ maximal age”

Join (must)

Interpretation: memory block a is
definitively in the (concrete) cache
=> always hit

- 23 -Cache with LRU Replacement: Transfer for may

z
y
x
t

s
z
y
x

s
z
x
t

z
s
x
t

concrete

abstract

“young”

“old”

Age

[s]

{x, z }
{ }

{s, t }
{ y }

{ s }
{x, z }

{ }
{y, t }

[s]

- 24 -

Cache Analysis: Join (may)
{ a }
{ }

{ c, f }
{ d }

{ c }
{ e }
{ a }
{ d }

{ a,c }
{ e}
{ f }
{ d }

“union
+ minimal age”

Join (may)

- 25 -

Pipelines

Ideal Case: 1 Instruction per Cycle

Fetch

Decode

Execute

WB

Fetch
Decode

Execute

WB

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode

Execute
WB

Fetch
Decode

Execute

WB

Fetch
Decode

Execute

WB

- 26 -

CPU as a (Concrete) State Machine

•

Processor (pipeline, cache, memory, inputs)
viewed as a big

state machine,

performing transitions every clock cycle
•

Starting in an initial state

for an

instruction,
transitions are performed,
until a final state

is reached:

–

End state: instruction has left the pipeline
–

transitions: execution time

of instruction

- 27 -

Pipeline Analysis

•

simulates the concrete pipeline on
abstract states

•

counts the number of steps until an
instruction retires

•

non-determinism resulting from
abstraction and timing anomalies require
exhaustive exploration of paths

- 28 -

Integrated Analysis: Overall Picture

Basic Block

s1

s10

s2 s3

s11 s12

s1

s13

Fixed point iteration over Basic Blocks (in
context) {s1, s2, s3 } abstract state

move.1 (A0,D0),D1

Cyclewise evolution of processor model
for instruction

s1 s2 s3

- 29 -

Implementation

•

Abstract model

is

implemented

as a DFA
•

Instructions

are

the

nodes

in the

CFG

•

Domain is

powerset

of set

of abstract

states
•

Transfer functions

at the

edges

in the

CFG

iterate

cycle-wise

updating

each

state

in the
 current

abstract

value

• max{# iterations for all states} gives

bound
•

From this, we can obtain bounds for basic

 blocks

- 30 -

Classification of Pipelined Architectures

•

Fully

timing

compositional

architectures:
–

no timing

anomalies.

–

analysis

can

safely

follow

local

worst-case

paths

only,
–

example: ARM7.

•

Compositional

architectures

with

constant-
 bounded

effects:

–

exhibit

timing

anomalies, but

no domino

effects,
–

example: Infineon

TriCore

•

Non-compositional

architectures:
–

exhibit

domino

effects

and timing

anomalies.

–

timing

analysis

always

has to follow

all paths,
–

example: PowerPC

755

- 35 -

Structure of the Talk
1.

Timing Analysis –

the Problem

2.

Timing Analysis –

a Sketch of our Approach
•

the overall approach, tool architecture

•

cache analysis
•

pipeline analysis

3.

Results and experience
4.

Architectural and Timing Predictability

•

predictability of cache replacement strategies
•

extending predictability concepts beyond caches

•

going multi-core
5.

Conclusion

- 36 -

aiT

WCET Analyzer
IST Project DAEDALUS final

review report:
"The AbsInt tool is probably the
best of its kind in the world and it
is justified to consider this result
as a breakthrough.”

Several time-critical subsystems of the Airbus A380
have been certified using aiT;
aiT

is the only validated tool for these applications.

- 37 -Tremendous Progress
 during the past 12 Years

1995 2002 2005

ov
er

-e
st

im
at

io
n

20-30%
15%

30-50%

4

25

60

200
ca

ch
e-

m
is

s p
en

al
ty

Lim et al. Thesing et al. Souyris et al.

The explosion of penalties has been compensated
by the improvement of the analyses!

10%

25%

- 38 -

Structure of the Talk
1.

Timing Analysis –

the Problem

2.

Timing Analysis –

a Sketch of our Approach
•

the overall approach, tool architecture

•

cache analysis
•

pipeline analysis

3.

Results and experience
4.

Architectural and Timing Predictability

•

predictability of cache replacement strategies
•

extending predictability concepts beyond caches

•

going multi-core
5.

Conclusion

- 39 -

Timing Predictability

Experience has shown that the precision of results
depend on system characteristics

•

of the underlying hardware platform and
•

of the software layers

•

We will concentrate on the influence of the HW
architecture on the predictability

What do we intuitively understand as
Predictability?

Is it compatible with the goal of optimizing
average-case performance?

- 40 -

Making Life Easier

Goal: Reconcile (average-case) performance with
(worst-case) predictability.

Simplify the semantics, more precisely the
architecture, if it is too complex:

•

hard to provide sound timing analyses for ever
more complex architectures,

•

they are optimized for the wrong target,
anyway.

Scalability of analyses and precision of the results
are often correlated.

- 41 -

Objectives

of PREDATOR

Identify good points in the 3-dimensional space of
•

predictability (of the worst case),

•

performance (in the average case),
•

efficiency of verification methods.

Develop design methods for timing-predictable and
performant

systems

- 42 -Processor Features of the MPC 7448
 (just to show how bad things are getting)

•

Single e600 core, 600MHz-
 1,7GHz core clock

•

32 KB L1 data and instruction
caches

•

1 MB unified L2 cache

with ECC
•

Up to 12 instructions in
instruction queue

•

Up to 16 instructions in parallel
execution

•

7 stage pipeline
•

3 issue queues, GPR, FPR,
AltiVec

•

11 independent execution units

- 43 -Processor Features (cont.)
•

Branch Processing Unit
–

Static and dynamic branch prediction

–

Up to 3 outstanding speculative branches
–

Branch folding during fetching

•

4 Integer Units
–

3 identical simple units (IU1s), 1 for complex operations (IU2)

•

1 Floating Point Unit with 5 stages
•

4 Vector Units

•

1 Load Store Unit with 3 stages
–

Supports hits under misses

–

5 entry L1 load miss queue
–

5 entry outstanding store queue

–

Data forwarding from outstanding stores to dependent loads
•

Rename buffers (16 GPR/16 FPR/16 VR)

•

16 entry Completion Queue
–

Out-of-order execution

but In-order completion

- 44 -

Challenges and Predictability
•

Speculative Execution
–

Up to 3 level of speculation

due to unknown branch

prediction
•

Cache Prediction
–

Different pipeline paths for L1 cache hits/misses

–

Hits under misses
–

PLRU cache replacement policy

for L1 caches

•

Arbitration between different functional units
–

Instructions have different execution times on IU1
and IU2

•

Connection to the Memory Subsystem
–

Up to 8 parallel accesses

on MPX bus

•

Several clock domains
–

L2 cache controller clocked with half core clock

–

Memory subsystem clocked with 100 –

200 MHz

- 45 -Architectural Complexity
implies

 Analysis Complexity
Every hardware component whose state has

an influence on the timing behavior
•

must be conservatively modeled,

•

contributes a multiplicative factor to the
size of the search space

- 46 -

Predictability

of
Cache Replacement

Policies

- 47 -

Uncertainty

in Cache Analysis

read
y

mul
x, y

read
x

write
z

1. Initial cache contents?
2. Need to combine information
3. Cannot resolve address of x...
4. Imprecise analysis domain/
 update functions

 Need to recover information:
 Predictability = Speed of Recovery

- 48 -

Metrics

of Predictability:
...

...
...

[f,e,d]

[f,e,c]

[f,d,c]

[h,g,f]

fill
evict

Seq: a b c d e f g h

Two

Variants:
M = Misses Only
HM

evict & fill

- 49 -

Meaning

of evict/fill

-

I

•

Evict: may-information:
–

What

is

definitely

not

in the

cache?

–

Safe information

about

Cache Misses
•

Fill: must-information:
–

What

is

definitely

in the

cache?

–

Safe information

about

Cache Hits

- 51 -

Replacement

Policies

•

LRU –

Least Recently

Used
Intel Pentium, MIPS 24K/34K

•

FIFO –

First-In First-Out (Round-robin)
Intel XScale, ARM9, ARM11

•

PLRU –

Pseudo-LRU
Intel Pentium II+III+IV, PowerPC

75x

•

MRU –

Most Recently

Used

- 52 -

MRU -

Most Recently

Used

MRU-bit

records

whether

line

was recently
 used

Problem: never

stabilizes

e

c
b,d

c „safe“
for 5 acc.

- 53 -

Tree

maintains

order:

Problem: accesses

„rejuvenate“
 neighborhood

Pseudo-LRU

c e

- 54 -

Results: tight

bounds

Generic

examples

prove

tightness.

- 55 -

Results: instances

for

k=4,8

Question: 8-way PLRU cache,

4 instructions

per line
 Assume

equal

distribution

of instructions

over

256 sets:
How

long

a straight-line

code

sequence

is

needed

to

obtain

precise

may-information?

- 56 -LRU has Optimal Predictability,
 so why is it Seldom Used?

•

LRU is more expensive than PLRU, Random, etc.
•

But it can be made fast
–

Single-cycle operation is feasible [Ackland

JSSC00]

–

Pipelined update can be designed with no stalls
•

Gets worse with high-associativity

caches

–

Feasibility demonstrated up to 16-ways
•

There is room for finding lower-cost highly-

 predictable schemes with good performance

- 57 -

Extended the Predictability Notion

•

The cache-predictability concept applies
to all cache-like architecture components:

•

TLBs, BTBs, other history mechanisms
•

It does not cover the whole architectural
domain.

- 58 -

The Predictability Notion

Unpredictability
•

is an inherent system property

•

limits the obtainable precision of static predictions about
dynamic system behavior

Digital hardware behaves deterministically

(ignoring
defects, thermal effects etc.)

•

Transition is fully determined by current state and input
•

We model hardware

as a (hierarchically structured,

sequentially and concurrently composed) finite state
machine

•

Software and inputs induce possible (hardware)
component inputs

- 59 -

Uncertainties About State and Input

•

If initial system state and input were known only
one execution (time) were possible.

•

To be safe, static analysis must take into account
all possible initial states and inputs.

•

Uncertainty about state

implies a set of starting
states and different transition paths in the
architecture.

•

Uncertainty about program input

implies possibly
different program control flow.

•

Overall result: possibly different execution times

- 60 -Source and Manifestation of
Unpredictability

•

“Outer view”

of the problem: Unpredictability
manifests itself in the variance of execution
time

•

Shortest and longest paths through the
automaton are the BCET and WCET

•

“Inner view”

of the problem: Where does the
variance come from?

•

For this, one has to look into the structure of
the finite automata

- 61 -

Connection Between Automata and Uncertainty

•

Uncertainty

about state

and input

are
qualitatively different:

•

State uncertainty

shows up at the “beginning”

≅
 number of possible initial starting states the

automaton may be in.
•

States of automaton with high in-degree lose
this initial uncertainty.

•

Input uncertainty

shows up while “running the
automaton”.

•

Nodes of automaton with high out-degree
introduce uncertainty.

- 62 -

State Predictability –

the Outer View

Let T(i;s)

be the execution time with component input i
starting in hardware component state s.

The range is in [0::1], 1 means perfectly timing-predictable

The smaller the set of states, the smaller the variance
and the larger the predictability.

The smaller the set of component inputs to consider,
the larger the predictability.

- 64 -

Variability of Execution Times

•

often caused by the interference on
shared resources
–

instructions interfer

on the caches

–

bus masters interfer

on the bus
–

several threads interfer

on shared caches

- 65 -PROMPT Design Principles
for Predictable Systems

•

reduce interference

on shared resources in
architecture design

•

avoid introduction of interferences

in mapping
application to target architecture

Applied to Predictable Multi-Core Systems
•

Private resources for non-shared components

of

applications
•

Deterministic regime for the access to shared
resources

- 66 -

Conclusions
•

The determination of safe and precise upper
bounds on execution times by static program
analysis and Integer Linear Programming
essentially solves the problem.
Ongoing work:
–

Incorporation of preemption-caused costs,

–

timing analysis of heap-manipulating programs,
–

semi-automatic derivation of abstract processor
models

•

Precision greatly depends on predictability
properties of the system
–

notion needs further clarification, criteria to be used
in design

- 67 -

Relevant Publications
•

C. Ferdinand et al.: Cache Behavior Prediction by Abstract Interpretation.
Science of Computer Programming 35(2): 163-189 (1999)

•

C. Ferdinand et al.: Reliable and Precise WCET Determination of a Real-Life
Processor, EMSOFT 2001

•

R. Heckmann et al.: The Influence of Processor Architecture on the Design and
the Results of WCET Tools, IEEE Proc. on Real-Time Systems, July 2003

•

St. Thesing et al.: An Abstract Interpretation-based Timing Validation of Hard
Real-Time Avionics Software, IPDS 2003

•

L. Thiele, R. Wilhelm: Design for Timing Predictability, Real-Time Systems, Dec.
2004

•

R. Wilhelm: Determination of Execution Time Bounds, Embedded Systems
Handbook, CRC Press, 2005

•

St. Thesing: Modeling a System Controller for Timing Analysis, EMSOFT 2006
•

J. Reineke et al.: Predictability of Cache Replacement Policies, Real-Time
Systems, Springer, 2007

•

R. Wilhelm et al.:The Determination of Worst-Case Execution Times - Overview
of the Methods and Survey of Tools. ACM Transactions on Embedded Computing
Systems (TECS) 7(3), 2008.

•

R.Wilhelm et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-critical Embedded Systems, accepted by IEEE TCAD

	Foliennummer 1
	Hard Real-Time Systems
	Deriving Run-Time Guarantees for �Hard Real-Time Systems
	Structure of the Talk
	What does Execution Time Depend on?
	Modern Hardware Features
	Foliennummer 7
	Notions in Timing Analysis
	High-Level Requirements for Timing Analysis
	Execution Time is History-Sensitive
	Our Approach
	Timing Accidents and Penalties
	Deriving Run-Time Guarantees
	Overall Approach: Natural Modularization
	Foliennummer 15
	Caches: How the work
	Cache Analysis
	Must-Cache and May-Cache- Information
	Cache with LRU Replacement: Transfer for must
	Cache Analysis: Join (must)
	Cache with LRU Replacement: Transfer for may
	Cache Analysis: Join (may)
	Pipelines
	CPU as a (Concrete) State Machine
	Pipeline Analysis
	Integrated Analysis: Overall Picture
	Implementation
	Classification of Pipelined Architectures
	Structure of the Talk
	Foliennummer 36
	Tremendous Progress�during the past 12 Years
	Structure of the Talk
	Timing Predictability
	Making Life Easier
	Objectives of PREDATOR
	Processor Features of the MPC 7448�(just to show how bad things are getting)
	Processor Features (cont.)
	Challenges and Predictability
	Architectural Complexity �implies�Analysis Complexity
	Predictability of �Cache Replacement Policies
	Uncertainty in Cache Analysis
	Metrics of Predictability:
	Meaning of evict/fill - I
	Replacement Policies
	MRU - Most Recently Used
	Pseudo-LRU
	Results: tight bounds
	Results: instances for k=4,8
	LRU has Optimal Predictability,�so why is it Seldom Used?
	Extended the Predictability Notion
	The Predictability Notion
	Uncertainties About State and Input
	Source and Manifestation of Unpredictability
	Connection Between Automata and Uncertainty
	State Predictability – the Outer View
	Variability of Execution Times
	PROMPT Design Principles �for Predictable Systems
	Conclusions
	Relevant Publications

