Summer Getaway: A Glance at Computer Science, Peking University

Congratulations on finishing another school year! What's next? How does experiencing a different education system sound to you? While you can just sit back relaxing at home or even at the beach feeling the summer breeze, **10 professors** from the School of Computer Science at Peking University will share their research with you.

Our summer school will last for 3 days, from July 12-14. There will be two sessions each day, one morning session from

9:00-11:00 AM (Beijing time) and one evening session from 8:30-10:30 PM (Beijing time).

If you would like to participate and learn more about the School of Computer Science or just Computer Science in general, please join us for the 3-day summer school.

Date	Session	Title/Abstract	Presenter (s)
7/12	AM	Opening: Introduction of School of Computer Science at Peking University	Zhenjiang Hu
		Through this opening session, you will gain an insight of School of Computer	Bin Cui
		Science, such as its history, disciplines, global impact, etc.	Yao Guo
		This session will also share with you the programs that the School of Computer	Minghui Zhou
		Science offers for international students.	
		Last but not the least, you will hear from current international students at the School	
		of Computer Science.	
	PM	Robot Vision and Learning:	He Wang
		The research and development of robotic and unmanned systems, e.g. home robots	
		and autonomous vehicles, is a frontier field in computer science and artificial	
		intelligence leading a way to artificial general intelligence (AGI). In recent years,	
		deep learning based 3D vision systems and reinforcement learning algorithms have	
		achieved a number of breakthroughs, spawning the emerging field embodied	
		artificial intelligence, and generating many new directions and topics worthy of in-	
		depth investigation. Therefore, we offer this advanced graduate-level course for	
		students with backgrounds in deep learning and computer vision to further their	
		study in 3D vision and robot learning. The course will cover various tasks and	
		problems ranging from the construction of robot vision systems to vision-based	
		robot control and interaction, and aims to offer deep and broad discussion of this	
		cutting-edge field.	

	PM	Towards Machine Learning Generalization in the Open World:	Shanghang Zhang
		Even though a great deal of existing work has been devoted to the field of machine	
		learning, it still suffers from severe challenges: 1) Domain shift and novel categories	
		of objects often arise dynamically in nature, which fundamentally limits the	
		scalability and applicability of deep learning models to handle this dynamic scenario	
		when labeled examples are not available. 2) Since real-world data usually varies	
		over different environments and has a long-tailed distribution, it is prohibitively	
		expensive to annotate enough data to cover all these variances. However, existing	
		deep learning models usually lack generalization capability and fails to generalize	
		to the out-of-distribution data with limited labels. In this talk, I will introduce my	
		research on how to address these challenges by building machine learning systems	
		that can automatically adapt to new domains, tasks, and dynamic environments with	
		limited training data. Specifically, I will talk about a series of my research on both	
		theoretical study and algorithm design from three aspects: 1) Generalize to new	
		domains; 2) Generalize to new categories; 3) Generalized and efficient machine	
		learning for IoT applications, including intelligent transportation and healthcare,	
		which promotes the landing of AI in the real world. Especially, I will discuss the	
		exploration of brain cognition mechanism to develop generalized machine learning	
		that can adapt to new domains and modalities with limited labels.	
7/13	AM	Multi-Agent Reinforcement Learning:	Zongqing Lu
		Multi-agent reinforcement learning (MARL) is a well-abstracted model for many	
		real-world problems. In this talk, I will focus on the MARL algorithms to solve	
		cooperative multi-agent tasks, covering value decomposition, multi-agent actor-	
		critic, and more recent advances in this research field.	
	AM	An Overview to Person Re-Identification:	Shiliang Zhang
		PERSON Re-Identification (ReID) is a task that retrieves and identifies a query	

	person from non-overlapping camera networks. It is commonly tackled as a fine- grained image retrieval task and faces many challenging issues. For example, lots of persons share similar appearance, and the appearance of each person can be affected by lots of factors like cloth change, viewpoint and illumination variance, occlusions, etc. Moreover, it is very difficult to manually identify the same person across different cameras, making the data annotation very time consuming and expensive. Due to its important applications in surveillance and public security, person ReID has become a popular topic in computer vision and image retrieval	
	community. Many efforts have been made to promote its performance. This talk	
	gives an overview to person ReID, its challenges, as well as recent efforts on	
DM	Supervised, semi-supervised, and tuny unsupervised memods for person KerD.	Cusiis Lus
PM	Application mapping on Reconfigurable and Tiled Processors:	Guojie Luo
	Reconfigurable and tiled processors provide an extra trade-off point of	
	programmability and efficiency among CPU, GPU, and ASIC. Coarse-grained	
	reconfigurable architecture (CGRA) is one of the representative computing devices.	
	The CGRA compilation problem is to map an application onto a 3D time-space	
	model of the CGRA. In this lecture, we will give a survey of application mapping	
	problems, as well as an example of optimization modulo theories (OMT)	
	formulation for an efficient solution.	
PM	An Efficient Infrastructure for Distributed Modeling Training:	Wenfei Wu
	In Deep Neural Network (DNN), the size of the model and dataset is increasing, and	
	the DNN training tends to be implemented in a distributed architecture. The PS-	
	worker architecture for DNN systems suffers from the traffic incast problem, where	
	many workers exchange traffic with the PS, causing the PS to be the bottleneck.	
	Inspired by the recent progress in programmable switches, we propose an	
	Aggregation Transmission Protocol (ATP), which supports multi-tenant and multi-	

		rack in-network aggregation for DNN training. ATP consists of the networking stack	
		on end hosts and the aggregation service on switches. The switch allocates its	
		computation resources to jobs in a decentralized manner. The end host networking	
		stack has a fallback to complement the switch's corner-case incapability(e.g.,	
		overflow, packet loss) and congestion control to share network resources. Finally,	
		we made a bunch of engineering optimizations to make ATP saturate the high-	
		bandwidth network (100Gbps). We wrap up ATP as a primitive in the transport layer	
		and integrate it with ML systems, and show that ATP can provide both performance	
		gain and correctness to typical DNN training (e.g., AlexNet, VGG, ResNet).	
	PM	Improving Quality of Experience for Video Streaming with AI at Network	Kaigui Bian
		Edge:	0
		Over Internet, video content has consumed more than 80% bandwidth. In many	
		countries like China, the number of users watching long- or short-form videos has	
		exceeded 600 millions. However, the high-speed mobile access network, congested	
		backboned network, and under-construction edge networks cannot fulfill the	
		demands in video streaming from Internet users. Hence, it is still challenging to	
		improve the quality of experience of watching a video online. To address the	
		problem, it is promising to have artificial intelligence (AI) techniques for enhancing	
		the video streaming services, e.g., to predict the popularity of video content in future.	
		to characterize the dynamics of network bandwidth, and to analyze the user	
		behaviors. Key enabling techniques includes video content caching, dynamic bit rate	
		selection, super-resolution, object detection, which support better quality of	
		experience for video content consumers in the era of 5G and beyond.	
7/14	AM	Probabilistic Programming and Its Applications in Software Analyses:	Xin Zhang
.,		Probabilistic programming has emerged as a new approach to program artificial	B
		intelligence systems. On one hand, it is a new programming model/language that	
	1		

	has built-in support for random variables. On the other hand, it is a new machine learning model that allows expressing highly-complex probabilistic models using a general-purpose programming language. In this talk, I will use representative probabilistic programming languages as examples to introduce the theories, algorithms, and applications of probabilistic programming. Then, I will talk about how software analyses can leverage probabilistic programming to gain new capabilities. These capabilities enables us building smarter software engineering	
PM	Principle of Least Sensing & Computing: Building an Intelligent System with	Leye Wang
	Minimum Data:	
	With the worldwide emergence of data protection regulations, how to conduct law-	
	regulated big data analytics becomes a challenging and fundamental problem. This	
	talk introduces the principle of least sensing & computing, a promising paradigm	
	toward law-regulated big data analytics. Under the guidance of this principle,	
	various techniques including sparse sensing, differential privacy, and federated	
	learning can be integrated to build an intelligent system with the minimum data.	
PM	Algorithm Design and Analysis: From Classical to Quantum:	Tongyang Li
	Algorithm design and analysis is one of the most fundamental directions in computer	
	science. Classical algorithms have been extensively studied since the start of	
	computer science research, but in the current trend of quantum computing, the	
	design of quantum algorithms is much less understood. In this talk, I will introduce	
	my research that bridges the gap between the fields of quantum computing and	
	theoretical computer science. To be more specific, I will briefly introduce some of	
	my recent developments on quantum algorithms for machine learning and	
	optimization, and introduce their connections to the general study of computer	
	science.	

While you are interested, please fill out this form <u>https://docs.qq.com/form/page/DVFFIa3RZSWVwa056</u> (or scan the QR code) before **June 30**, so that we can send you the link for participation!

Should you have any questions, please contact us at gradadmissions.cs@pku.edu.cn

