溫故之新: 하드디스크와 플래시메모리

for (current_block = 0; current_block < N0_OF_BLOCK; current_block++) {
 FM_Erase(current_block);
}</pre>

민 상 렬 (symin@snu.ac.kr) (+ Mobile Embedded Systems Lab 연구원들) 서울대학교 공과대학 컴퓨터공학부

M SEOUL NATIONAL UNIVERSITY

Outline

- HDD Basics and Demo
- Flash Memory Basics and Demo
- Storage Trends
- Conclusions

Outline

- HDD Basics and Demo
- Flash Memory Basics and Demo
- Storage Trends
- Conclusions

HDD internals

Mechanical components

Source: "ABCs of Disk Drives," Sudhanva Gurumurthi

Data layout

- Rotating disks consist of platters, each with two surfaces
- Each surface consists of concentric rings called tracks
- Each track consists of sectors separated by gaps

Source:

Disk operation

The disk surface spins at a fixed rotational rate

Source:

"http://camars.kaist.ac.kr/~joon/course/sep562_2006_1/notes/10_11%20Memory_Hierarchy.ppt"

Source: "http://www.cs.duke.edu/~chase/cps110/slides/files1.ppt"

Source: "http://www.cs.duke.edu/~chase/cps110/slides/files1.ppt"

Seek time Rotational latency

Source: "http://www.cs.duke.edu/~chase/cps110/slides/files1.ppt"

Source: "http://www.cs.duke.edu/~chase/cps110/slides/files1.ppt"

Disk access time

- Disk access time
 - Seek time + Rotational latency + Transfer time
- Seek time
 - Time to position heads over cylinder containing target sector
 - 0 ~ 25 ms
- Rotational latency
 - Time waiting for first bit of target sector to pass under r/w head
 - Full rotation: 4 ~ 12 ms (15000 ~ 5400 RPM)
- Transfer time
 - Time to read the bits in the target sector
 - 1 sector transfer: 1.3 ~ 12.8 us (380 ~ 40 MB/s transfer rate)

Electronic components

 Presenting a simple abstract view of the complex sector geometry

Flash memory and Advanced Storage Technology group

울대학교

Electronic components

- Disk controller
 - Controlling the overall system
 - Major functions
 - Host interface
 - Request translation (LBA \iff [cylinder, surface, sector])
 - Reliability mechanism (e.g. ECC, bad sector handling)
 - Performance improvement (e.g. request scheduling and disk caching)
 - Power management (e.g. spin down of spindle motor)
 - Typically, embedded processor (such as ARM) + logic circuits

Outline

- HDD Basics and Demo
 - Demo
- Flash Memory Basics and Demo
- Storage Trends
- Conclusions

Demo HDD Specification

Model Name: SAMSUNG MP0402H (2.5 in)

- Size:
 - total 78,236,550 sectors
 - 40,057,113,600 bytes ≈ 37.30 GB
- Interface: ATA-6 (supports UDMA100)
- Buffer: 8MB DRAM
- Performance brief:
 - Avg. Seek time: 12 ms
 - Avg. Rotational Latency: 5.6 ms (5400 RPM)

reference url:

http://www.samsung.com/Products/HardDiskDrive/SpinPointMSeries/HardDiskDrive_SpinpointMseries_MP0402H_sp.htm

Demo I – Power-on sequence

Demo II – Sequential read/write

Demo III – Read/Write with a stride

Demo IV – Read/Write in a convergent manner

Demo V – Random read/write

Demo VI – Effect of read caching/write buffering

Demo VII – Windows XP start-up

windows XP Start-UP

(

HDD performance trends (1)

 HDD access time trends are fairly flat due to mechanical nature of device

Flash memory and Advanced Storage Technology group

FAST

HDD Performance trends (2)

 A workload that was 5% disk bound in '96 would be 55% disk bound in '05

HDD density trends

Source: Hitachi Global Storage Technologies

HDD Summary

The Ugly

- Latent sector errors

The Bad

- High latency
- High power consumption
- Low reliability
- Large form factor
- Limited parallelism

The Good

- High capacity
- Low cost

Outline

- HDD Basics and Demo
- Flash Memory Basics and Demo
- Storage Trends
- Conclusions

Conventional MOS Transistor

Schematic symbol

Conventional MOS Transistor: A Constant-Threshold Transistor

Flash Memory

(전) 서울대학교 SEOUL NATIONAL UNIVERSITY

Flash Memory

Flash Memory: A "Programmable-Threshold" Transistor

More Bits Per Transistor

Source: Eli Harari (SanDisk), "NAND at Center Stage," Flash Memory Summit 2007.

NAND Flash Memory Interface

Why (NAND) Flash Memory?

- Advantages of Flash Memory over HDD
 - Low latency
 - Low power consumption
 - Tolerant to shock & vibration
 - Silent operation
 - Small size
 - Abundant parallelism
 - **.**.

 Single NAND Flash Memory Chip Density Trends

Source: Samsung Electronics

(More) NAND Flash Memory Trends

\$/MB	DRAM	NAND Flash
2000	\$0.97	\$1.35
2001	0.22	0.43
2002	0.22	0.25
2003	0.17	0.21
2004	0.17	0.10
2005	0.11	0.05
2006	0.096	0.021
2007	0.057	0.012
2008	~0.025	< 0.005
CAGR	-32.1%/yr	-50.0%/yr

Source: Lane Mason (Denali Software), "NAND FlashPoint Platform"

(More) NAND Flash Memory Trends

Millions GB	DRAM	NAND Flash
2000	30	1.1
2001	50	1.6
2002	71	4.6
2003	98	14.6
2004	158	68
2005	240	200
2006	340	600
2007	645	1600
2008	1000	4000
CAGR	+60.0%/yr	+150%/yr

Source: Lane Mason (Denali Software), "NAND FlashPoint Platform"

Solid State Disk

 Provides an interface identical to a hard disk, but uses flash memory as a storage medium

Identical Interface

Solid State Disk: Form Factor Agnostic

	Standard FF		Special FF		
	1.8"	2.5"	1.0"	SLIM	So DIMM
	Suprime File 300 (Sad Sale Ria) 306 Byte Processioner and Processioner and Procession wave and				
Density	4~64GB	4~64GB	4~16GB	4~64GB	8~16GB
Dimension (H x W x T)	78.5x54x8.0	100.2x70x9.5	30x40x4.0	70.6x53.6x: 3.0: 16/32GB 2.5: 4~8GB	53.6x70.6x3.0
Connector	ZIF/IDE 50pin	IDE 44pin	ZIF 35pin	ZIF 40pin	200pin
Weight	44g	46g	TBD	20g	TBD
Market	Notebook	Sub-Note / Tablet	DVC/GPS/ UMPC	UMPC	Custom

Source: Jim Elliot (Samsung Electronics), "SSD: The Next Killer App in NAND Flash," Flash Memory Summit 2007.

Flash memory summary

The Good

- Low latency
- Low power consumption
- High Reliability
- Small form factor
- Massive parallelism

FROM THE DARK NIGHT

The Bad

- No in-place updating
- Limited endurance
- Bad blocks
- Write disturbance
- Read disturbance

The Ugly

- Retention errors
- Paired page problem

Outline

- HDD Basics and Demo
- Flash Memory Basics and Demo
- Storage Trends
- Conclusions

Storage Trends

Tape Is Dead Disk Is Tape

- 1 TB disks are available
- 10+ TB disks are predicted in 5 years
- But: ~5..15 hours to read (sequential)
 - ~15..150 days to read (random)
- Need to treat most of disk as Cold-storage archive

Source: Jim Gray (Microsoft), "Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is King"

Storage Trends

Disk Is Tape Flash Is Disk

- 1995 16 Mb NAND flash chips
 2005 16 Gb NAND flash chips
- 2012 1 Tb NAND flash chips
 - == 128 GB chip
 - == 1 TB or 2 TB solid state disk for ~\$400
 - or 128 GB solid state disk for ~\$40
 - or 32 GB solid state disk for \sim \$5

Source: Jim Gray (Microsoft), "Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is King"

Disk is Tape / Flash is Disk

Source: Esther Spanjer (Adtron), "Enterprise SSD: The next killer app," Flash Memory Summit 2007.

Disk is Tape / Flash is Disk

Source: Jim Gray (Microsoft), "Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is King"

Disk is Tape / Flash is Disk

Power Consumption

Source: Jim Elliot (Samsung Electronics), "SSD: The Next Killer App in NAND Flash," Flash Memory Summit 2007.

Future Outlook

Source: Scott Deutsch (SanDisk), "Bringing Solid State Drives to Mainstream Notebooks," Flash Memory Summit 2007.

Outline

- HDD Basics and Demo
- Flash Memory Basics and Demo
- Storage Trends
- Conclusions

Conclusions

- In the animal world
 - Survival of the fittest

- In the memory world
 - Survival of the fastest or cheapest

	Volatile	Non-volatile
Fastest	SRAM	FRAM?
Cheapest	DRAM	NAND Flash
		HDD

Conclusions

• From the history

	IBM 360/85	IBM 360/91
Clock Rate	80 ns	60 ns
Memory Speed	1040 ns	750 ns
Memory Interleaving	4 way	8 way
Additional Features	Cache Memory	Register Renaming, Out-of-order Execution, <i>etc</i>

But, IBM 360/85 faster on 8 of 11 programs!

Source: David Patterson, et al., "A Case for Intelligent DRAM: IRAM", Hot Chips VIII, August, 1996

The Ultimate Limit – HDD

FAST

The Ultimate Limit – Flash Memory

Scanning tunneling microscope image of a silicon surface showing 10 nm is ~20 atoms across

Source: B. Shirley, "The Many Flavors of NAND ... and More to Come," Flash Memory Summit 2009

Outline

- HDD Basics and Demo
- Flash Memory Basics and Demo
- Storage Trends
- Conclusions
- (More Demos)

Flash Memory Software Development Platforms

Embedded Flash Memory 소프트웨어 솔루션 개발용

Flash / NV-RAM Modules

Samsung SLC NAND

Samsung MLC NAND

RAMTRON FRAM (serial)

RAMTRON FRAM (parallel)

FREESCALE MRAM (parallel)

Samsung Phase-change RAM

Samsung OneNAND

Hynix MLC NAND

Embedded Platform

SSD (Solid State Disk) Platform

