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Abstract. Probabilistic models are widely used in evolutionary and related algo-
rithms. In Genetic Programming (GP), the Probabilistic Prototype Tree (PPT) is
often used as a model representation. Drift due to sampling bias is a widely recog-
nised problem, and may be serious, particularly in dependent probability models.
While this has been closely studied in independent probability models, and more
recently in probabilistic dependency models, it has received little attention in sys-
tems with strict dependence between probabilistic variables such as arise in PPT
representation. Here, we investigate this issue, and present results suggesting that
the drift effect in such models may be particularly severe – so severe as to cast
doubt on their scalability. We present a preliminary analysis through a factor rep-
resentation of the joint probability distribution We suggest future directions for
research aiming to overcome this problem.

1 Introduction

A wide range of evolutionary algorithms learn explicit probability models, sampling
individuals from them, using the fitness of individuals to update the model. They range
from Colorni and Dorigo’s Ant Colony Optimization (ACO) [1]and Baluja’s Popula-
tion Based Incremental Learning (PBIL) [2] through Muehlenbein and Manig’s Factor-
ized Distribution Algorithm (FDA) [3] or Pelikan’s Bayesian Optimization Algorithm
(BOA) [4] to Salustowicz and Schmidhuber’s Probabilistic Incremental Program Evolu-
tion (PIPE) [5]. Historically, different strands of this research have developed in relative
isolation, and there is no acknowledged single term to describe them. In this paper, we
refer to such algorithms as Estimation of Distribution Algorithms (EDAs), acknowledg-
ing that this may be wider-than-normal usage.

When EDAs are applied to Genetic Programming (GP) [6] problems, the most
obvious question is what statistical model to use to represent the GP solution space,
and how to learn it. This question has drawn most of the attention of researchers in this
field, with consequent neglect of the sampling stage of EDA-GP algorithms.

In GP, many EDAs have used variants of the Probabilistic Prototype Tree (PPT)
as their proability model, beginning with PIPE [5] and extending to Yanai and Iba’s
EDP [7], Sastry et al.’s ECG) [8], Hasegawa and Iba’s POLE [9], Looks et al.’s BOAP [10]
and Roux and Fontupt’s Ant Programming [11]. The PPT is a convenient model for rep-
resenting probability distributions estimated from tree individuals. However Hasegawa
and Iba already noted that it suffers from some representational problems, and proposed
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the Extended Parse Tree (EPT) variant [9]. What has not been studied is the effect on
sampling drift of its implicit dependence model.

Sampling drift effect is an important problem for all probability models. However
the strict probability dependence in the PPT greatly amplifies this effect relative to
the other major sources of bias in EDAs (selection pressure and learning bias), thus
becoming a critical issue in scaling of PPT-based EDAs to large-scale problems.

In this paper, we examine this problem both empirically and mathematically. We
designed two simple problems, closely related to the well-known one-max and max
problems, with simple fitness landscapes to reduce the effects of other factors. We com-
pare the behaviour of a PIPE model with a PBIL-style independent model to illustrate
the amplified effect of sampling bias. We mathematically investigate how the factorised
distribution implicit in the PPT model causes this increased sampling bias.

In section 2, we present a brief overview of EDAs and of PPTs..The experiments
are described in section 3, with their results following in section 4. Section 5 analyse
the factorisation implicit in the PPT. We discuss the implications of these results in
section 6, drawing conclusions and proposing future directions in section 7.

2 Background Knowledge

2.1 Estimation of Distribution Algorithms

EDAs are evolutionary algorithms incorporating stochastic models. They use the key
evolutionary concepts of iterated stochastic operations as shown below:

generate N individuals randomly
while not termination conditiondo

Evaluate individuals using fitness function
Select best individuals
Construct stochastic model from selected individuals
Sample new population from model distribution

end while
They differ from a typical evolutionary algorithm only in model construction and sam-
pling. All EDAs use some classM of probability models, and a corresponding decom-
position of the structure of individuals. Model construction specifies a model fromM
for each component. Sampling a new individual traverses thecomponents, sampling a
value from each model, so that the sample component distribution reflects the model’s.
In the simplest version, PBIL, the probability model is a vector of independent proba-
bility tables, one for each location of the phenotype.

2.2 Probabilistic PrototypeTrees and EDAs

PPT-based EDAs use a tree structure to store the probabilitydistribution. Given a pre-
defined instruction set of maximum arityn, the PPT is ann-ary full tree storing a
probability table over the set of instructions. PPT was firstused in PIPE [5], where each
node contained an independent probability table. ECGP [8] extended this by modelling
dependence between PPT nodes as in the Extended Compact Genetic Algorithm [12].
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EDP [7] instead conditioned each node on its parent. BOAP [10] learnt Bayesian net-
works (BN) of dependences in the PPT, while POLE [9] learnt BNs representing de-
pendences in an ”Extended Parse Tree”, a variant of the PPT.

2.3 Benchmark Problems

One Max is the near-trivial problem of finding a fixed-length binary string maximising
the sum of all bits [13]. Its fitness landscape is smooth with no local optima. Thus it
is well-suited to the PBIL independent-probability model,using a probability vector
V = [E1, . . . , En] over the value set{0, 1} to represent the locations in the string.

The Max problem is a generalisation of one-max, where the goal is to find the largest-
valued tree that can be constructed from a given function setI and terminal set T, in a
given depthD [14]. Typically I = {×, +} andT = {0.5}. This appears well-suited
to the ”independent” probability model of PIPE, in that eachnode of the PPT – in this
case, a full binary tree – holds an independent probability table, giving the probability
of selecting each element ofI ∪ T . The simplest case of max,I = {+}, T = {0, 1}
is closely related to one-max, in that once the system has found a full binary shape, the
remaining problem, of filling the leaves with 1, is essentially the one-max problem. We
note that in making this comparison, we are, in effect, mapping the nodes of the PPT
tree to corresponding locations in a PBIL chromosome.

2.4 Grammar Guided Genetic Programming

To set the context for this study, we compare the performanceof GP on the same prob-
lems; we can’t use a standard GP system for this, because it isunable to enforce the
constraints of the one-max problem. For fair comparison, weuse a Grammar Guided
GP system (GGGP) [15].

3 Experimental Analysis

Our experiments illuminate sampling drift in PPT-based EDAs, comparing it with a
well-understood model (PBIL). We need to specify four aspects:

1. the probability model structures
2. the fitness functions
3. the EDA algorithm
4. experimental parameters

To illustrate, we use the max problem, and a slight variant ofone-max, with the same
target as max (but a more one-max-like fitness function). We compare with a conven-
tional GGGP approach to show the intrinsic simplicity of these problems. For economy
of explanation, we describe the max problem first.
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3.1 Model Structures

The genotype representationis a 15-long stringX = X1, . . . , X15. This can be used
in either of two ways: the string can be modelled through an independent, PBIL-style
genotype, or it can be mapped to a binary PPT of depth 3 (which has 15 nodes).

In the PBIL structure each location contains an independent probability table with
three possible values,+, × and0.5. The table is used to generate sample values at each
generation, then is updated to reflect the sample distribution of the selected individuals.

In the PPT structureeach location contains an independent probability table over the
values+,× and0.5, but each (except the leaves) has two children, with the relationship:

left child(Xi) = Xi×2

righ child(Xi) = Xi×2+1

”Independence” in the latter case must be taken with a grain of salt. While theprob-
ability tables in the PBIL structure are independent, the PPT structure introduces a de-
pendence: the descendants of a node holding the (terminal) value0.5 are not sampled.
This is the primary issue under consideration here.

3.2 Max Problem Fitness Function

Fitness is defined by the following equation:

itFit (Xi) =























itFit (left child(Xi)) × itFit(right child(Xi)) ifXi = ×, 1 ≤ i ≤ 7
itFit (left child(Xi)) + itFit (right child(Xi)) ifXi = +, 1 ≤ i ≤ 7
0.0 ifXi = ×, 8 ≤ i ≤ 15
0.0 ifXi = +, 8 ≤ i ≤ 15
0.5 ifXi = 0.5

When+, × were used in leaf nodes, there is a problem in allocating fitness, since
they have no children. To overcome this, in this case we give them fitness 0. The max-
imum value of this function (the target) corresponds to a full binary tree with+ in the
bottom two layers, and+ or× in the top layer.

3.3 Variant One-max Problem Fitness Function

The task is to find a string having a specific value in each location, defined by dividing
the locations into three groups, as in equations 1.

L1 = {X1}

L2 = {Xi} 2 ≤ i ≤ 7

L3 = {Xi} 8 ≤ i ≤ 15 (1)

In this case, the fitness function is given by equation 2:

omFit(X) =
∑15

i=1
locFit(Xi) (2)
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where

locFit(Xi) =















1 if Xi = × andXi ∈ L1

1 if Xi = + andXi ∈ L2

1 if Xi = 0.5 andXi ∈ L3

0 else

This differs from the typical one-max problem in two ways: there are three possible
values, not two, and target values at differ with location. However neither makes much
difference to the fitness landscape, which remains smooth, with no local optima.

3.4 EDA System

In these comparisons, we use a very simple EDA system so that the implications of the
experiments are clear. In detail:

Selection: truncation. Given a selection ratioλ, the topλ proportion of individuals are
selected. We varied the selection ratioλ to investigate the effect and scale of drift.

Model Update: the model structure was fixed for the whole evolution. Maximum like-
lihood was used to estimate the probabilities from the selected sample.

Sampling: we used Probabilistic Logic Sampling [16], the most straightforward sam-
pling method, used in most EDA-GP systems.

To simplify understanding, two common EDA mechanisms whichcan slow drift,
elitism and mutation, were omitted from the system

3.5 Parameter Settings

We used truncation selection with selection ratios rangingfrom 10% to 100% at a 10%
interval. The population size was 100, and the algorithm wasrun for 200 generations.
Each setting was run 30 times. Detailed parameters settingsfor the GGGP and EDA-
GP runs are shown in table 1, while the grammar used for GGGP (with starting symbol
EXP1) is shown in table 2

Table 1.Experimental Parameter Settings

General Value EDA Value GGGP Value
Parameters Parameters Parameters
Genotype Operators Operators

Length 15 Selection Truncation Selection Tournament
Values +,×, 0.5 Ratios 0.1, . . . , 1.0 Size 5

Update Max. Likelihood Cross. prob. 0.5
Sampling PLS Mut. prob. 0.75

Population 50 Dependence Reproduction Generational
Generations 200 PBIL independent
Runs 30 PPT PPT
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Table 2.GGGP Grammar

EXPi → EXPi+1 OP EXPi+1 (0 < i < 4)
EXP4 → OP
OP → +|×|0.5

4 Result of Preliminary Experiments

4.1 One-Max Results

0

2

4

6

8

10

12

14

16

20 40 60 80 100120140160180200

F
it
n
e
s
s

Generation

 10%
 40%
 80%
 90%

 100%

0

2

4

6

8

10

12

14

16

20 40 60 80 100120140160180200

F
it
n
e
s
s

Generation

 10%
 40%
 80%
 90%

 100%

Fig. 1. Best Fitness vs Generation for One-max Variant (Structure :left, PBIL, right, PPT ;
percentage is the selection ratio)

Figure 1 shows the performance of the two probability models, at various levels
of selection. Each plot shows a particular structure for a range of different selection
ratios. Each line represents the best fitness achieved in each generation, for a particular
selection ratio. By comparison, GGGP finds perfect solutions in14.3±4.9 generations.

We note that even for this near-trivial fitness function, PPTshows worse perfor-
mance than PBIL. In the left-hand plot, the PBIL structure finds a solution close to
the optimum (15) at most selection ratios other than 90% and 100% (i.e. no selection).
These results are replicated for the selection ratios not plotted, most showing perfor-
mance very close to the optimum, as with the 40% selection ratio. By comparison, the
PPT model shows much worse performance. In all selection ratios, PPT converges to
sub-optimal solutions. The difference increases with weaker selection, with the 100%
ratio showing a substantial decrease in fitness, below that achieved by random sam-
pling. With selection pressure turned off, this drift is theresult purely of sampling.
With increasing selectivity, the drift effect becomes weaker, but still acts counter to the
selection pressure.

4.2 Max Problem

This problem is much tougher than the previous. GGGP finds perfect solutions in17.8±
8.0 generations. However EDA performance fares far worse. The PBIL model is unable
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Fig. 2. Best Fitness vs Generation for Max (Structure : left,PBIL, right, PPT , percentage is
the selection ratio)

to find the optimum solution (4) at any selection ratio, and the differences from the
optimum are larger than for one-max. Given that the fitness function has epistasis, which
PBIL is unable to model, this is not surprising. What is surprising is the even poorer
performance of the PPT model. PPT appears well-matched to the fitness function, yet
performs much worse than the naive PBIL model. PBIL is able toachieve fitnesses,
for some selection ratios, of around 3.4, whereas PPT never exceeds 2.7. the effects
are particularly marked around selection ratios from 10% through to 60%, with the
differences becoming weaker by 80% to 90%, and essentially disappearing at a 100%
selection ratio.

4.3 Performance of PPT

Overall, we see poor performance from the PPT model for both simple and complex
problems. Even for the max problem – the kind of problem that PPT was designed to
solve – it shows much worse performance than PBIL. The behaviour under 100% se-
lection – i.e. pure sampling drift – suggests a possible cause: that sampling drift [17]
may be the major influence on peformance. The poor performance on the trivial fit-
ness landscape of the one-max variant supports this. The good performance of GGGP
emphasizes just how damaging this effect is.

5 Analysis of the PPT Model

5.1 The Effects of Arity

In a PPT, each node represents a random variable which can take any of the possible
instructions as its value.1 Table 3 shows a typical example for the case of symbolic
regression, with a function set consisting of the four binary arithmetic operators, four
unary trigonometric and exponential operators, and a variable and constant, of arity 0.

1 nodes at the maximum depth are only permitted values of zero arity, but for the sake of sim-
plicity we omit this from consideration here.
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Table 3.PPT Table for Symbolic Regression, Showing Arities

InstructionArity Probability InstructionArity Probability
+ 2 0.1 sin 1 0.1
× 2 0.1 cos 1 0.1
- 2 0.1 log 1 0.1
/ 2 0.1 exp 1 0.1
x 0 0.1 C 0 0.1

The combining of nodes of different arities in the PPT model creates a dependence
relationship between parent and child nodes, even though their probability distributions
appear to be separate. If a noden1 is sampled as sin, one of the child nodes – conven-
tionallyn3 – loses the opportunity to sample an instruction. Thereforethe probability of
samplingn3 is different from that ofn2, the other child node. Thus although the prob-
ability distribution ofn3 is independent of the condition set ofn1, n3 is nevertheless
dependent on the complete condition set ofn1, because the probability of sampling an
instruction forn3 is 0 in the case where a unary function or variable is sampled at n1.

To clarify this dependency, we transform the PPT probability distribution to a semi-
degenerate Bayesian network.2

5.2 Conversion to Semi-Degenerate Bayesian Network

Undefined instruction In the PPT, each node’s probability table cannot be directly
treated as a random variable, because the probability distribution for some conditions
of the parent is not recorded in the table. To cover this case,where a node can not select
any value, we define an additional valueU , for ’undefined value’. Taking a simple case
with just three values,+, sin andC, an independent PPT might have probabilities of
0.4 for+ and sin, and 0.2 forC. Taking account of the parent-child dependencies, we
could represent the overall conditional dependency of a random variable for a node
given its parent, as in figure 3. In the parent node ofM4, any of+, sin,C or U might
be sampled. WhenC, constant, is sampled,M4 is not able to sample any value, so that
the probabilities for selecting+, sin andC are zero; to represent that no instruction can
be sampled in this condition, we allocate the ’undefined’ instruction a probability of
1.0. If the parent node is sampled as ’undefined’,M4 must also be undefined.

Figure 4 shows more detail, illustrating how a simple three-node PPT can be trans-
formed into a (semi-degenerate) BN. Note that the probability structures of the left and
right children differ (because of the differing effects of the sin function in the parent).

5.3 Factorization of Full Joint Distribution

Dependent variable In the resulting BN, the transformed nodes become conditionally
dependent on their parent nodes (there are only two exceptions – either the node is

2 In standard terminology, tables without zeros are said to benon-degenerate, and tables con-
taining only 0.0 and 1.0 are degenerate. We introduce the term ’semi-degenerate’ for the inter-
mediate case, of tables containing 0.0 but not necessarily 1.0.
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Fig. 3. Transformed Probability table of PPT

Fig. 4.Transformation from PPT to semi-degenerate BN

always undefined, hence unreachable and may be omitted from the PPT, or else the
node is always defined, implying that the parent node cannot sample a terminal, an
unreasonable situation in GP – both may be safely ignored).

In the simplest PPT case, where each node’s value is assumed probabilistically in-
dependent of the other nodes, the only dependence is that arising above. That is, this
simple case corresponds to the assumption that each node is conditionally independent
of all other nodes in the PPT, conditioned only on its parents. Thus the probability dis-
tribution of nodex can be represented byp(x|parent ofx), and the full joint probability
distribution of the transformed PPT as:

p(X) =
∏

i

p(xi|xparent ofi) (3)

Of course, more complex dependencies between PPT nodes may give rise to more com-
plex dependencies in the corresponding BN, but the dependence of the child on its par-
ents will always remain.
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Fig. 5. Entropy of Population vs Generation (Left: One-max Variant; Right: Max (ind : indepen-
dent – PBIL – structure))

Sampling bias This factorization of the joint distribution gives us a way of under-
standing the rapid diversity loss in PPT-based EDAs. In PLS sampling, for each ran-
dom variable, the sample size is the same in the transformed PPT. However the actually
meaningful instructions exclude undefined instructions. The size of the sample actually
used to generate meaningful instructions reduces (exponentially) with depth. This is the
cause of the rapid diversity loss due to sampling drift: unlike other EDAs, in which
the sample size is the same across all variables, drift increases due to reduced sample
size with depth. Figure 5, shows the population (phenotype)entropy at each generation.
We only show the 100% selection ratio, because there, there is no diversity loss due
to selection, the whole loss is the result of sampling drift.In both problems, the loss
of diversity due to sampling drift is much greater in the PPT representation than in the
PBIL representation.

6 Discussion

The importance of these results lie not merely in their direct implications for this trivial
problem, but in their implications for PPT-based EDAs for GP. Compare these problems
with typical GP problems. The dependency depth is atypically small, corresponding to
a GP tree depth bound of only 3. The dependency branching is typical, or even slightly
below average, for GP. And of course, the fitness landscape isvastly simpler than most
GP problem domains. If this is so, why has EDA-GP been able to succeed, and even
demonstrate good performance on some typical GP problems? We believe it is due to
masking of the problem of accelerated drift under sampling in typical implementations.

These implementations generally incorporate mechanisms reducing the effect of
sampling drift: better selection strategies and model update mechanisms, adding elitism
and mutation all contribute to this reduction. In addition,our problem is tougher than
typical GP problems in one respect: there is only one solution (two for the max prob-
lem). Most problem domains explored by GP have symmetries, so that eliminating a
solution may not stymie exploration. Thus EDA-GP has been able to work well for GP
test problems. However the drift effect worsens exponentially with tree depth, while
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these ameliorating mechanisms only scale linearly. Perhaps this is why EDA-GP has so
far been limited to demonstrations on test problems rather than practical applications.

Some previous PPT research, notably Hasegawa and Iba’s POLE[9], incorporates
measures to ameliorate sampling drift using the Extended Parse Tree. Here, our focus
is to clarify the effect of accelerated drift due to PPT dependency, as a preliminary to
investigating solutions.

7 Conclusions

Diversity loss due to sampling is a well-known problem in EDAresearch, and has been
carefully studied for independent probability models. It is well-known that the the prob-
lem worsens in probabilistic dependency models, and some lower bounds for the effect
have already been found [17]. However there does not appear to have been previous
publication of the effects on PPT-based (branching) EDAs.

By studying the sampling drift effect of two structures, on anear-trivial optimisa-
tion problem and another only slightly harder, we were able to see the importance of
this diversity loss. The effects are sufficient to cast doubton the scalability of most cur-
rent approaches to EDA-GP. Can these problems be overcome? Can scalable EDA-GP
systems be built? We believe it to be possible, but not easy. Any remedy must coun-
teract the depth dependence of the drift. This probably eliminates variants of some of
the traditional methods. For example, it is difficult to see how to incorporate depen-
dence depth into population-based mechanisms such as elitism. Similarly, it doesn’t
seem easy to use mutation or similar mechanisms in a useful depth-dependent way. On
the other hand, it may be possible to incorporate depth-based mechanisms into model
update and/or sampling in ways that might be able to overcomethe depth-dependence
of sampling drift, and so permit scaling.

In the near future, we plan to extend this work in three directions. The first, already
in progress, involves experimental measurement of diversity loss to gauge the extent
of acceleration of the sampling drift effect. The second, inprospect, will attempt to
mathematically estimate the diversity loss through samplesize estimation. The third
extends this work to grammar-based GP EDA systems (i.e. those not based on PPTs).
Similar problems of accelerated sampling bias occur in these systems, though it is more
difficult to isolate clear demonstrations of this.

Acknowledgment
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