e s R B Rl

Iz e ufA2 HdolE L ZEAof QlojA SAo] H= wAlolt B2 HHolE It 11
JEe BAREDE off LA ol A% aehme] dele] W Al 1Az e o
TAE F= gaEFo] o] FasiA Al Sl

H 7ﬂ7~1tﬂﬂ0ﬂ/ﬂ = = ol w4 71 7] o] E&= subgraph matching (¥+= subgraph
isomorphism) SA1E #2A Fi AXELOS AL A Gk (AAT B ofefe] 47
;d-—!).

o A7t A4 2 tish()4
o A U
T g =
= 1 200 7
=7 1 100 7H
e 2 7} 505k
o Uj2] 44
T 717t A&
]] 3] GitHub A& AE forkst &, €Y 22(29])
2171 A1 A <] o] _ 5] ol Eﬂﬂ v o= il) B ST \A
AR | sded YIS g ge, G A4 92 olldE Az
A o8 59 129 - 6¥ 1 GitHub A7 Ao A A 1)
A dF =9 TR 9 A7 A
o o)A

— Aedist AFETEE AHEolE
— Tel. 82-2-880-1828
— E-mail. yhnam@theory.snu.ac.kr

GitHub. https://github. com/SNUCSE-CTA/Graph-Pattern-Matching-Challenge

HE

4 A7

* B AR el Bl AR EAY AU0R PRENI YA (UG Wo SWHFH
B SALATY SWAERE TR 2,

https://github.com/SNUCSE-CTA/Graph-Pattern-Matching-Challenge

Graph Pattern Matching Challenge

Given a data graph G and a query graph g, subgraph matching (also known as subgraph iso-
morphism) is the problem of finding all distinct embeddings (i.e., matches) of ¢ in G. Most
practical solutions for subgraph matching are based on the backtracking approach, which re-
cursively extends a partial embedding by mapping query vertices to data vertices one by one.
The performances of a subgraph matching algorithm that uses the backtracking framework may
differ depending on the choice of a matching order. For example, the state-of-the-art subgraph
matching algorithm DAF uses the backtracking framework based on DAG ordering, in which the
matching order follows a topological order of a directed acyclic graph ¢p of q.

In this challenge, one team consists of two people, and you are to design your matching order
and solve subgraph matching using backtracking. You are to write a program that gets as input
(1) a data graph G = (Vi, Eq, L), (2) a query graph ¢ = (Vg, Eq4, Ly), and (3) a candidate set
C(u) for each vertex u € V; (C(u) is a set of vertices in G which u may be mapped to) and
outputs at most 10° distinct embeddings of ¢ in G. For example, for query graph ¢ and data
graph G in Figure[I] there are two embeddings of ¢ in G, i.e., {(uo, vo), (u1, v2), (uz, v4), (usz,ve)}
and {(ug,vo), (u1,v3), (u2,v4), (uz,v9)}. You are not supposed to use any pruning techniques
such as failing sets in DAF. For simplicity, we focus on undirected, connected, and vertex-labeled
graphs in this challenge. To assist you in carrying out the challenge, (1) a set of data graphs,
(2) a set of query graphs, and (3) an executable program that outputs a candidate set for each
query vertex for a given data graph and a query graph will be provided in a GitHub repository
(https://github.com/SNUCSE-CTA/Graph-Pattern-Matching-Challenge)). You must fork the
repository and do the challenge there. Your scores will be based on the last commit before the
deadline.

(a) Query graph ¢ (b) Data graph G

Figure 1: Query graph and data graph of subgraph matching

Since subgraph matching is an NP-hard problem, finding 10° matches may take too much
time. In this challenge, therefore, the time limit for a query graph is set to 1 minute, regardless
of the language used. The performance of your program will be measured by

X(q7 G) — Y(qa G)
Z Z max (X(q.C) ,O),

GeG qeQqa

where G is a set of data graphs, Q¢ is a set of query graphs for data graph G, X(q,G) is the
number of embeddings of ¢ in G in your output, Y (¢, G) is the number of mappings in your

https://github.com/SNUCSE-CTA/Graph-Pattern-Matching-Challenge

output that are not embeddings of ¢ in G, and X*(g, G) is the maximum number of embeddings
of ¢ in G found by contestants. Programs that are tied will be ranked by their running times,
regardless of the language used. Note that whenever an embedding is found during backtracking,
it should be printed out immediately. Otherwise, your program may not be able to print the
embeddings, since programs that exceed the time limit will be killed.

If you have any questions about the challenge, you may leave your questions on the issue board
of the repository (https://github.com/SNUCSE-CTA/Graph-Pattern-Matching-Challenge/
issues)).

o

Your program must take a data graph file path as the first command line argument, a
query graph file path as the second command line argument, a candidate set file path as
the third command line argument, and write the embeddings to stdout, following the file
formats described below.

Explain in your report how your program chooses a matching order and performs back-
tracking.

Write down the environment you run your program and how to run your program in your
report.

Write comments appropriately in your program.
Upload your report and source code to your GitHub repository.

Email your team member list and GitHub repository address (yhnam@theory.snu.ac.kr).

Graph file format. A line in a file must be one of the followings.

1.

Tag. There is one tag line per file, which must appear before any vertex or edge descriptors.
The tag line has the following format.

t ID VERTICES
The lower case character t signifies that this is a tag line. ID field contains an integer
value specifying the id of the graph. VERTICES field contains an integer value specifying the
number of vertices in the graph.

Vertex descriptors. There is one vertex descriptor line for each vertex of the graph. The
vertex descriptor line has the following format.

v ID LABEL
The lower case character v signifies that this is a vertex descriptor line. ID field contains an
integer value specifying the id of the vertex. LABEL field contains an integer value specifying
the label of the vertex.

Edge descriptors. There is one edge descriptor line for each edge of the graph. The edge
descriptor line has the following format.
e ID1 ID2 LABEL

The lower case character e signifies that this is an edge descriptor line. ID1 field contains an
integer value specifying the id of one vertex. ID2 field contains an integer value specifying
the id of another vertex. LABEL field contains an integer value specifying the label of the
edge. Note that, in this challenge, LABEL field contains 0 for any edge descriptor line, since
we focus on vertex-labeled graphs.

https://github.com/SNUCSE-CTA/Graph-Pattern-Matching-Challenge/issues
https://github.com/SNUCSE-CTA/Graph-Pattern-Matching-Challenge/issues

Here

O 0O 0 00 < < S S
NP, OO WNRO
W WNDNDNE WNE~-O

O O O O O

is a sample instance for the query graph in Figure
04

Candidate set file format. A line in a file must be one of the followings.

1.

2.

Here
t

O o0 o0 o

Tag. There is one tag line per file, which must appear before any CS descriptors. The tag
line has the following format.

t VERTICES
The lower case character t signifies that this is a tag line. VERTICES field contains an integer
value specifying the number of vertices in the query graph.

CS descriptors. There is one CS descriptor line for each vertex of the query graph. The
CS descriptor line has the following format.

c ID SIZE ID1 ID2 ...
The lower case character c signifies that this is a CS descriptor line. ID field contains an
integer value specifying the id of the query vertex. SIZE field contains an integer value
specifying the size of the candidate set. ID1, ID2, ... fields contain integer values specifying
the ids of each data vertex in the candidate set.

is a sample instance for the query graph and the data graph in Figure

W N~ O

=W N

© N O
g W

Output file format. A line in a file must be one of the followings.

1.

Tag. There is one tag line per file, which must appear before any Embedding descriptors.
The tag line has the following format.

t VERTICES
The lower case character t signifies that this is a tag line. VERTICES field contains an integer
value specifying the number of vertices in the query graph.

. Embedding descriptors. There is one embedding descriptor line for each embedding of

the query graph in the data graph. The embedding descriptor line has the following format.
a ID1 ID2 ...

The lower case character a signifies that this is a embedding descriptor line. ID1 field

contains an integer value specifying the id of the vertex in the data graph that is the

mapping of a query vertex 0 in this embedding, ID2 field contains an integer value specifying

the id of the vertex in the data graph that is the mapping of a query vertex 1 in this

embedding, and so on.

Here is a sample instance for the query graph and the data graph in Figure
t 4
a0249
a0349

