Connections between discrete and continuous optimization

Euiwoong Lee University of Michigan

"CS Theory"

- "Theoretical Computer Science" (TCS) / "Theory of Computing" (ToC)
- What do we do?
	- We prove theorems about computation

STOC/FOCS/SODA community

- Sometimes called "algorithms and complexity"
	- STOC (**S**ymp. on **T**heory **o**f **C**omputing, since 1969)
	- FOCS (symp on **F**oundations **o**f **C**omputer **S**cience, since 1960)
	- SODA (**S**ymp. **o**n **D**iscrete **A**lgorithms, since 1990)
- Other significant communities of TCS
	- Logic and theory of programming languages
	- Optimization/numerical analysis
	- Information/coding/control/systems performance theory

Theory [off | on]

csrankings.org

Influence from Mathematics

- Everything you claim should be proved.
- Authors are ordered alphabetically.
- Some papers are published in math journals
- Avi Wigderson and László Lovász won 2021 Abel Prize.
	- Avi's PhD is from Computer Science!

A "typical paper" looks like…

- "Task/problem" that you want to do with computers
	- Finding shortest path, factoring integer, finding optimal parameters for neural nets
	- Any well-defined "function" specifying (valid input) => (desired output)
- "Model of computation"
	- (poly-time/randomized/non-deterministic) Turing machine
	- streaming/online/dynamic
	- distributed/parallel
	- quantum
	- crypto/communication
	- market/brain/evolution (computational lens)
- Can do it (there's an algorithm) or cannot do it (there's no algorithm)!

Some cool recent things

- Computing Maximum Flow of graph $G = (V, E)$
	- [Ford-Fulkerson 56] $O(|E|f)$ where f is max flow --- not poly-time
	- [Dinitz 70, Edmonds-Karp 72] $O(|V|^2|E|)$
	- …
	- [CKLPPS 22] $O(|E|^{1.0001})$
		- Combination of interior point method (continuous) + graph theory (discrete)
- Traveling Salesperson Problem (TSP)
	- Given $G = (V, E)$, find shortest tour that visits every vertex at least once.
	- [Christofides 76] 1.5-approximation
	- [KKO 21] $(1.5 10^{-36})$ -approximation!
		- Combination of graph cut representation (discrete) + realstable polynomials (continuous).

Plan

Plan

- Minimization
- Input
	- $-$ (Undir.) Graph G = (V, E)
- Output
	- Subset U of V such that
	- U intersects (covers) every edge!
- Objective Function
	- Cardinality of U

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
	- Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
	- Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
	- Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
	- Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
	- Including all edges incident on them
- Repeat until G has no edge.

- Let $p = #$ of blue (chosen) edges
	- $|U| = 2p$
	- Every Vertex Cover has to contain at least one vertex from each blue edge!
	- All blue edges do not share a vertex
	- $-$ OPT \geq p.
	- Therefore, |U|≤2OPT.

Example 2: Max Cut

- Maximization
- Input
	- $-$ Graph G = (V, E)
- Output
	- Coloring $V \rightarrow \{B, R\}$
- Objective Function
	- # of edges between Blue and Red

Example 2: Max Cut

- For each v, randomly (and independently) color B or R.
- Each edge is $(B-R)$ with probability 0.5.
	- 0.5-approximation
- [GW94] Semidefinite programming min
۱<r< $0 \leq x \leq 1 \pi$ 1 $\arccos(1-2x) \approx 0.878$

Big Open Questions

- Can we do better?
	- 1.99-approximation for Vertex Cover
	- 0.879 for Max-Cut

Probably not!

- [Khot 02] Unique Games Conjecture (UGC).
- [KR08, KKMO07] Tight hardness for Vertex Cover and Max-Cut assuming UGC

Probably not!

- [Khot 02] Unique Games Conjecture (UGC).
- [KR08, KKMO07] Tight hardness for Vertex Cover and Max-Cut assuming UGC

Plan

Plan

- [RS 10] Small Set Expansion Hypothesis (SSEH)
	- $-$ SSEH \Rightarrow UGC \Rightarrow (optimal hardness for ...)
	- $-$ Don't know whether SSEH \Leftarrow UGC
- Will focus on SSEH..

Spectral Graph Theory 101

- Let $G = (V, E)$ be a d-regular graph. $(n = |V|)$
- Given $S \subseteq V$,

$$
- \Phi(S) \coloneqq \frac{|E(S, V \setminus S)|}{d|S|}
$$

- Note that $0 \leq \Phi(S) \leq 1$
- *S* is "expanding" when $\Phi(S) \approx 1$.
- Fair to consider S with $|S| \le n/2$.
- $\Phi_G = \min_{|S| \le n}$ $S|\leq n/2$ $\Phi(S)$
	- Expansion of "the least expanding set"

Spectral Graph Theory 101

- Let $G = (V, E)$ be a d-regular graph. $(n = |V|)$
- Given $S \subseteq V$,
	- $-\Phi(S) \coloneqq \frac{|E(S,V \setminus S)|}{d|S|}$ $d|S$
	- Note that $0 \leq \Phi(S) \leq 1$
	- S is "expanding" when $\Phi(S) \approx 1$.
	- Fair to consider S with $|S| \le n/2$.
- $\Phi_G = \min_{|S| \le n}$ $S|\leq n/2$ $\Phi(S)$
	- Expansion of "the least expanding set"

Spectral Graph Theory 101

- Let $G = (V, E)$ be a d-regular graph. $(n = |V|)$
- Given $S \subseteq V$,
	- $-\Phi(S) \coloneqq \frac{|E(S,V \setminus S)|}{d|S|}$ $d|S$
	- Note that $0 \leq \Phi(S) \leq 1$
	- *S* is "expanding" when $\Phi(S) \approx 1$.
	- Fair to consider S with $|S| \le n/2$.
- $\Phi_G = \min_{|S| \le n}$ $S|\leq n/2$ $\Phi(S)$
	- Expansion of "the least expanding set"

$$
\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2} \Phi(S)
$$

SGT 101

- "Expansion problem"
	- Given G with $\Phi_G \leq \epsilon$,
	- $-$ Find T s.t.
		- $|T| \leq n/2$
		- $\Phi(T) \leq \epsilon'$
	- $-$ Want $\epsilon' \rightarrow 0$ as $\epsilon \rightarrow 0$.
- [Cheeger's inequality] Can solve "Expansion problem" with $\epsilon' = \sqrt{\epsilon}$

- Given d -regular G , consider normalized adjacency matrix A . $-A_{i,j} = 1/d$ if $(i, j) \in E$.
- Let $\lambda_1 \geq \cdots \geq \lambda_n$ eigenvalues of A

$$
-\lambda_1 = 1 \ (Ax = x \text{ when } x = (1, 1, \dots, 1)).
$$

 $\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2}$ $\Phi(S)$ **SGT 101** [Cheeger] Given G with $\Phi_G = \epsilon$, can find S with $\Phi(S) \le \sqrt{\epsilon}$

- Given d -regular G , consider normalized adjacency matrix A . $-A_{i,j} = 1/d$ if $(i, j) \in E$.
- Let $\lambda_1 \geq \cdots \geq \lambda_n$ eigenvalues of A

$$
-\lambda_1 = 1 \ (Ax = x \text{ when } x = (1, 1, ..., 1)).
$$

 $\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2}$ $\Phi(S)$ **SGT 101** [Cheeger] Given G with $\Phi_G = \epsilon$, can find S with $\Phi(\mathcal{S}) \leq \sqrt{\epsilon}$

- Given d -regular G , consider normalized adjacency matrix A . $-A_{i,j} = 1/d$ if $(i, j) \in E$.
- Let $\lambda_1 \geq \cdots \geq \lambda_n$ eigenvalues of A

$$
-(Ax)_i = \frac{1}{d} \sum_{(i,j) \in E} x_j
$$

• "Average x -value of nbrs"

 $\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2}$ $\Phi(S)$ **SGT 101** [Cheeger] Given G with $\Phi_G = \epsilon$, can find S with $\Phi(S) \le \sqrt{\epsilon}$

SGT 101 - Intuition

• $(Ax)_i = \frac{1}{d}$ $\frac{1}{d}\sum_{(i,j)\in E}\chi_j$

– "Average value of nbrs"

- If x is indicator vector of "expanding set" S,
	- Ax will have not much values in S
	- x and Ax are "far"

 $\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2}$ $\Phi(S)$ [Cheeger] Given G with $\Phi_G = \epsilon$, can find S with $\Phi(S) \leq \sqrt{\epsilon}$

b

c

d

a

SGT 101 - Intuition

- If x is indicator vector of "nonexpanding set" S,
	- Ax will have some values in S
	- x and $A x$ are "close"
		- Large eigenvalue and its eigenvector!
- [Cheeger] Converse of above
	- If $x \approx Ax$ and far from $(1, ..., 1)$,
		- E.g., $\lambda_2 x = Ax$,
	- x is "close" to indicator vector of non-expanding small set S .

 $\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2}$ $\Phi(S)$ [Cheeger] Given G with $\Phi_G = \epsilon$, can find S with $\Phi(S) \leq \sqrt{\epsilon}$

- $\Phi_{\delta,G} = \min_{|S| \leq \delta}$ S |≤ δ $\Phi(S)$.
	- So $\Phi_G = \Phi_{1/2,G}$.
- Q] Is there Cheeger-type algorithm?
	- Given $\Phi_{\delta,G} = \epsilon$, find T with
	- $-|T| \leq \delta n, \Phi(T) \leq \epsilon'.$
- [RS10] (SSE Hypothesis)
	- $-$ ∀ ϵ > 0, ∃ δ > 0 s.t. given G with $\Phi_{\delta,G} = \epsilon,$
	- NP-hard to find T with $|T| \leq \delta n$, $\Phi(T) \leq 1 - \epsilon$

$$
\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2} \Phi(S)
$$

[Cheeger] Given *G* with $\Phi_G = \epsilon$,
can find *S* with $\Phi(S) \le \sqrt{\epsilon}$

- $\Phi_{\delta,G} = \min_{|S| \leq \delta}$ S |≤ δ $\Phi(S)$.
	- So $\Phi_G = \Phi_{1/2,G}$.
- Q] Is there Cheeger-type algorithm?
	- Given $\Phi_{\delta,G} = \epsilon$, find T with
	- $-|T| \leq \delta n, \Phi(T) \leq \epsilon'.$
- [RS10] (SSE Hypothesis)
	- $-$ ∀ ϵ > 0, ∃ δ > 0 s.t. given G with $\Phi_{\delta,G} = \epsilon,$
	- NP-hard to find T with $|T| \leq \delta n$, $\Phi(T) \leq 1 - \epsilon$

$$
\Phi(S) = \frac{|E(S, V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2} \Phi(S)
$$

[Cheeger] Given *G* with $\Phi_G = \epsilon$,
can find *S* with $\Phi(S) \le \sqrt{\epsilon}$

$\Phi_{\delta,G} = \min_{|S| \leq \delta n}$ $\Phi(S)$ [SSEH] Given G with $\Phi_{G,\delta} = \epsilon$, *cannot* find *S* with $\Phi(S) \leq 1 - \epsilon$.

- Try previous algorithm.
	- Recall $1 = \lambda_1 \geq \cdots \geq \lambda_n$ with eigenvectors $v_1, ..., v_n$
	- $-$ Take v_2 s.t. $Av_2 = \lambda_2 v_2$.
- If v_2 is *sparse indicator*
	- E.g., indicator vector of some set $|S| \leq \delta n$.
	- S is a small non-expanding set!
- Even if $span(v_2, ..., v_k)$ contains a sparse indicator vector for small k , we are good.

Finding "Sparse" Vector

• Now if want to find a "sparse" vector in linear space $span(v_2, ..., v_k)$.

Finding "Sparse" Vector

- Now if want to find a "sparse" vector in linear space $V \subseteq \mathbb{R}^n$.
- What is good notion of "sparsity"?
	- # of nonzero entries is too susceptible to noise.

 \mathbb{R}^n

Finding "Sparse" Vector

- Now if want to find a "sparse" vector in linear space $V \subseteq \mathbb{R}^n$.
- What is good notion of "sparsity"?
	- # of nonzero entries is too susceptible to noise.

 \mathbb{R}^n

Plan

Plan

Norms

- Given a vector $x = (x_1, ..., x_n)$ and $p\geq 1$,
	- $-||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}.$
	- $-||x||_{\infty} \coloneqq \max_{i}$ ι x_i .
- Facts
	- $||x||_p \ge ||x||_q$ if $p \le q$
	- For $q > p$, $||x||_q/||x||_p$ is maximized when x has only one nonzero entry.
	- For $q < p$, $||x||_q/||x||_p$ is maximized when it is *well-spread* (i.e., $|x_1| =$ $|x_2| = \cdots = |x_n|$

Norms

- Given a vector $x = (x_1, ..., x_n)$ and $p\geq 1$,
	- $-||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}.$ $-||x||_{\infty} \coloneqq \max_{i}$ x_i .

 ι

- Facts
	- $||x||_p \ge ||x||_q$ if $p \le q$
	- For $q > p$, $||x||_q/||x||_p$ is maximized when x has only one nonzero entry.
	- For $q < p$, $||x||_q/||x||_p$ is maximized when it is *well-spread* (i.e., $|x_1| =$ $|x_2| = \cdots = |x_n|$

$$
||x||_1 = 1, ||x||_2 = 1, ||x||_4 = 1
$$

$$
\frac{||x||_1}{||x||_2} = 1, \qquad \frac{||x||_4}{||x||_2} = 1
$$

$$
\frac{\left|1/\sqrt{5}\right|1/\sqrt{5}\left|1/\sqrt{5}\right|1/\sqrt{5}\left|1/\sqrt{5}\right|}{\left||x||_1 = \sqrt{5}, \left||x||_2 = 1, \left||x||_4 = 1/\sqrt[4]{5}\right|\right)}
$$

$$
\frac{\left||x\right||_1}{\left||x\right||_2} = \sqrt{5} = 2.24 \frac{\left||x\right||_4}{\left||x\right||_2} = \frac{1}{\sqrt[4]{5}} = 0.66
$$

- Now if want to find a "sparse" vector in linear space $V \subseteq \mathbb{R}^n$.
- What is good notion of "sparsity"?
	- # of nonzero entries is too susceptible to noise.

 \mathbb{R}^n

- Now if want to find a "sparse" vector in linear space $V \subseteq \mathbb{R}^n$.
- What is good notion of "sparsity"?
	- # of nonzero entries is too susceptible to noise.
	- $-||x||_q/||x||_p$ is large when $q > p$.

 \mathbb{R}^n

 $||v||_q/||v||_p$ must be large!

- Now if want to find a "sparse" vector in linear space $V \subseteq \mathbb{R}^n$.
- What is good notion of "sparsity"?
	- # of nonzero entries is too susceptible to noise.
	- $-||x||_q/||x||_p$ is large when $q > p$.
- $(p = 2)$ Let A be matrix whose columns form orthonormal basis of V.
	- $\forall x: ||Ax||_2 = ||x||_2.$ $- Ax \in V$
- So, finding a "sparse" vector" in V became finding x that maximizes $\frac{||Ax||_q}{||dx||_q} = \frac{||Ax||_q}{||dx||_q}$ $||Ax||_2$ = $||x||_2$

Operator Norms

- For matrix A , and p , q , $\|A\|_{p\to q} := \max_{x\neq 0}$ $x\neq0$ $||Ax||_q$ $||x||_p$ $=$ max $x:||x||_p=1$ $||Ax||_q$
	- Can we (approximately) compute it?
- Connections to machine learning, quantum computing, etc. — When q is even integer, $\left|\left|Ax\right|\right|_q^q$ is degree- q polynomial in $x!$
- [BBHKSZ 12] When $p = 2, q > 2$, a good (constant) approx. algorithm to compute $||A||_{p\to q}$ solves Small Set Expansion.

Approximating $||A||_{p\rightarrow q}$

- $p = q = 2$: spectral norm.
- $p \geq q$: well-understood.
	- $-p \geq 2 \geq q$: K_G -approx. (1.67 $\leq K_G \leq$ 1.79)
	- $-$ Otherwise: No c -approx. is possible for any $c > 1$.
- [BGGLT 19] If $2 < p < q$ or $p < q <$ 2,
	- No c-approx. is possible for any $c > 1$.
	- $-$ First NP-hardness for $p < q$
	- Don't cover $p = 2, q > 2$.

Approximating $||A||_{p\rightarrow q}$

- $p = q = 2$: spectral norm.
- $p \geq q$: well-understood.
	- $-p \geq 2 \geq q$: K_G -approx. (1.67 $\leq K_G \leq$ 1.79)
	- $-$ Otherwise: No c -approx. is possible for any $c > 1$.
- [BGGLT 19] If $2 < p < q$ or $p < q <$ 2,
	- No c-approx. is possible for any $c > 1$.
	- $-$ First NP-hardness for $p < q$
	- Don't cover $p = 2, q > 2$.

One-line intuitions for proofs

- $p \geq q$: Closer to "discrete problems"!
	- When $p = \infty$, $||x||_{\infty} \le 1$ means $x_i \in [-1, +1]$ for every i
		- WLOG, can even assume $x_i \in \{-1, +1\}$
	- Tools from discrete problems work when $p \geq q$.
- [BGGLT 19] Hardness for $2 < p < q$
	- It is hard to find x with $||x||_p = 1$ with large $||Ax||_2$.
	- Dvoretzky's theorem: If B is a "random matrix", then $||By||_a \approx ||y||_2$
	- It is hard to find x with $||x||_p = 1$ with large $||BAx||_q!$

Plan

Plan

Quadratic optimization over general norm

- $||A||_{p\rightarrow 2}$: Easy when $p \geq 2$ (K_G -approx. $1.67 \leq K_G \leq 1.79$) but (believed to be) hard when $p < 2$.
- Can we generalize " p "?
- Let $B \subseteq \mathbb{R}^n$ be a symmetric $(B = -B)$ convex set.
	- Defines a general "norm": $||x||_B =$ (smallest $t > 0$ s.t. $x/t \in B$)
	- Example: Unit ℓ_p ball $\{x: ||x||_p \leq 1\}.$
- Input: $m \times n$ -matrix A.
- Output: $x \in B$ that maximizes $||Ax||_2$.
- Which B allows $O(1)$ -approximation?

Quadratic optimization over general norm

- Let $B \subseteq \mathbb{R}^n$ be a symmetric $(B = -B)$ convex set.
- Input: $m \times n$ -matrix A.
- Output: $x \in B$ that maximizes $||Ax||_2$.
- Which B allows $O(1)$ -approximation?
- Answer [BLN 21]: When B is "fatter" than ℓ_2 ball!
	- Using notion of "type" from functional analysis
	- Can handle more general norms (e.g., when x is matrix)!

Plan

Conclusion

- Continuous and Discrete optimization
	- This talk: through operator norms
	- Other connections (e.g., Max-flow, TSP)
- (Approximately) finding global optimum for non-convex functions
	- Many viewpoints: Statistics, Optimization, Machine learning, Physics, Pure math, CS, etc.
	- Important to build "bridges".
		- Recently started to talk to each other..
	- Exciting time to study!

Thank you!

