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“CS Theory”
• “Theoretical Computer Science” (TCS) / “Theory of Computing” (ToC)

• What do we do?
• We prove theorems about computation



STOC/FOCS/SODA community
• Sometimes called “algorithms and complexity”

• STOC (Symp. on Theory of Computing, since 1969)
• FOCS (symp on Foundations of Computer Science, since 1960)
• SODA (Symp. on Discrete Algorithms, since 1990)

• Other significant communities of TCS
• Logic and theory of programming languages
• Optimization/numerical analysis
• Information/coding/control/systems performance theory

csrankings.org



Influence from Mathematics 
• Everything you claim should be proved.

• Authors are ordered alphabetically.

• Some papers are published in math journals

• Avi Wigderson and László Lovász won 2021 
Abel Prize.
• Avi’s PhD is from Computer Science!



A “typical paper” looks like…
• “Task/problem” that you want to do with computers

• Finding shortest path, factoring integer, finding optimal parameters for neural nets
• Any well-defined “function” specifying (valid input) => (desired output)

• “Model of computation”
• (poly-time/randomized/non-deterministic) Turing machine
• streaming/online/dynamic
• distributed/parallel
• quantum
• crypto/communication
• market/brain/evolution (computational lens)

• Can do it (there’s an algorithm) or cannot do it (there’s no algorithm)!



Some cool recent things
• Computing Maximum Flow of graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)

• [Ford-Fulkerson 56] 𝑂𝑂(|𝐸𝐸|𝑓𝑓) where 𝑓𝑓 is max flow --- not 
poly-time 

• [Dinitz 70, Edmonds-Karp 72] 𝑂𝑂( 𝑉𝑉 2|𝐸𝐸|)
• …
• [CKLPPS 22] 𝑂𝑂( 𝐸𝐸 1.0001)

• Combination of interior point method (continuous) + 
graph theory (discrete)

• Traveling Salesperson Problem (TSP)
• Given 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), find shortest tour that visits every 

vertex at least once. 
• [Christofides 76] 1.5-approximation
• [KKO 21] (1.5 − 10−36)-approximation!

• Combination of graph cut representation (discrete) + real-
stable polynomials (continuous). 
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• Minimization
• Input

– (Undir.) Graph G = (V, E)

• Output
– Subset U of V such that
– U intersects (covers) every edge!

• Objective Function
– Cardinality of U

Example 1: Vertex Cover



• Choose an edge in G
• Add both endpoints to U.
• Delete these two vertices from G, 

– Including all edges incident on 
them

• Repeat until G has no edge.
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• Let p = # of blue (chosen) edges
– |U| = 2p
– Every Vertex Cover has to contain at 

least one vertex from each blue 
edge!

– All blue edges do not share a vertex
– OPT ≥ p.
– Therefore, |U|≤2OPT.

Example 1: Vertex Cover



• Maximization
• Input 

– Graph G = (V, E)

• Output
– Coloring V → {B, R}

• Objective Function
– # of edges between Blue and Red

Example 2: Max Cut



• For each v, randomly (and 
independently) color B or R.

• Each edge is (B-R) with probability 0.5.
– 0.5-approximation

• [GW94] Semidefinite programming 

min
0≤𝑥𝑥≤1

1
𝜋𝜋

arccos 1 − 2𝑥𝑥 ≈ 0.878

Example 2: Max Cut



• Can we do better?
– 1.99-approximation for Vertex Cover
– 0.879 for Max-Cut

Big Open Questions



Vertex Cover Max Cut

Algorithm 2 0.878 (GW 94)

NP-Hardness 1.36 (DS 05) 0.941(TSSW01)

UG-Hardness 2 (KR 08) 0.878(KKMO07)

• [Khot 02] Unique Games 
Conjecture (UGC).

• [KR08, KKMO07] Tight hardness 
for Vertex Cover and Max-Cut 
assuming UGC

Probably not!
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• [RS 10] Small Set Expansion Hypothesis (SSEH)
– SSEH ⇒ UGC ⇒ (optimal hardness for …)
– Don’t know whether SSEH ⇐ UGC

• Will focus on SSEH..

Small Set Expansion



Spectral Graph Theory 101

• Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a 𝑑𝑑-regular graph. 
(𝑛𝑛 = |𝑉𝑉|)

• Given 𝑆𝑆 ⊆ 𝑉𝑉,

– Φ 𝑆𝑆 ≔ 𝐸𝐸 𝑆𝑆,𝑉𝑉∖𝑆𝑆
𝑑𝑑 𝑆𝑆

– Note that 0 ≤ Φ 𝑆𝑆 ≤ 1
– 𝑆𝑆 is “expanding” when Φ 𝑆𝑆 ≈ 1.
– Fair to consider S with 𝑆𝑆 ≤ 𝑛𝑛/2.

• Φ𝐺𝐺 = min
𝑆𝑆 ≤𝑛𝑛/2

Φ(𝑆𝑆)

– Expansion of “the least expanding set”
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• “Expansion problem”
– Given 𝐺𝐺 with Φ𝐺𝐺 ≤ 𝜖𝜖, 
– Find 𝑇𝑇 s.t.

• 𝑇𝑇 ≤ 𝑛𝑛/2
• Φ 𝑇𝑇 ≤ 𝜖𝜖𝜖

– Want 𝜖𝜖′ → 0 as 𝜖𝜖 → 0.

• [Cheeger’s inequality]  Can solve 
“Expansion problem” with 𝜖𝜖′ = 𝜖𝜖

Φ 𝑆𝑆 = 𝐸𝐸 𝑆𝑆,𝑉𝑉∖𝑆𝑆
𝑑𝑑 𝑆𝑆

, Φ𝐺𝐺 = min
𝑆𝑆 ≤𝑛𝑛/2

Φ(𝑆𝑆)

SGT 101

𝐺𝐺

𝑆𝑆

Φ 𝑆𝑆 =
2
8

Φ 𝑇𝑇 =
6

12



• Given 𝑑𝑑-regular 𝐺𝐺, consider 
normalized adjacency matrix 𝐴𝐴.
– 𝐴𝐴𝑖𝑖,𝑗𝑗 = 1/𝑑𝑑 if 𝑖𝑖, 𝑗𝑗 ∈ 𝐸𝐸.

• Let 𝜆𝜆1 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛 eigenvalues of 
A
– 𝜆𝜆1 = 1 (𝐴𝐴𝑥𝑥 = 𝑥𝑥 when 𝑥𝑥 =

(1,1, … , 1)).

Φ 𝑆𝑆 = 𝐸𝐸 𝑆𝑆,𝑉𝑉∖𝑆𝑆
𝑑𝑑 𝑆𝑆

, Φ𝐺𝐺 = min
𝑆𝑆 ≤𝑛𝑛/2

Φ(𝑆𝑆)

[Cheeger] Given 𝐺𝐺 with Φ𝐺𝐺 = 𝜖𝜖, 
can find 𝑆𝑆 with Φ 𝑆𝑆 ≤ 𝜖𝜖SGT 101

a b
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• 𝐴𝐴𝑥𝑥 𝑖𝑖 = 1
𝑑𝑑
∑ 𝑖𝑖,𝑗𝑗 ∈𝐸𝐸 𝑥𝑥𝑗𝑗

– “Average value of nbrs”

• If 𝑥𝑥 is indicator vector of 
“expanding set” S, 
– 𝐴𝐴𝑥𝑥 will have not much values in 𝑆𝑆
– 𝑥𝑥 and 𝐴𝐴𝑥𝑥 are “far”
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• If 𝑥𝑥 is indicator vector of “non-
expanding set” S, 
– 𝐴𝐴𝑥𝑥 will have some values in 𝑆𝑆
– 𝑥𝑥 and 𝐴𝐴𝑥𝑥 are “close”

• Large eigenvalue  and its eigenvector!

• [Cheeger] Converse of above
– If 𝑥𝑥 ≈ 𝐴𝐴𝑥𝑥 and far from (1, … , 1),

• E.g., 𝜆𝜆2𝑥𝑥 = 𝐴𝐴𝑥𝑥,

– 𝑥𝑥 is “close” to indicator vector of 
non-expanding small set 𝑆𝑆.
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• Φ𝛿𝛿,𝐺𝐺 = min
𝑆𝑆 ≤𝛿𝛿𝑛𝑛

Φ 𝑆𝑆 .

– So Φ𝐺𝐺 = Φ1/2,𝐺𝐺.

• Q] Is there Cheeger-type algorithm?
– Given Φ𝛿𝛿,𝐺𝐺 = 𝜖𝜖, find 𝑇𝑇 with
– T ≤ 𝛿𝛿𝑛𝑛,Φ 𝑇𝑇 ≤ 𝜖𝜖𝜖.

• [RS10] (SSE Hypothesis)
– ∀𝜖𝜖 > 0, ∃𝛿𝛿 > 0 s.t. given 𝐺𝐺 with 
Φ𝛿𝛿,𝐺𝐺 = 𝜖𝜖,

– NP-hard to find 𝑇𝑇 with 𝑇𝑇 ≤ 𝛿𝛿𝑛𝑛, 
Φ 𝑇𝑇 ≤ 1 − 𝜖𝜖

Φ 𝑆𝑆 = 𝐸𝐸 𝑆𝑆,𝑉𝑉∖𝑆𝑆
𝑑𝑑 𝑆𝑆

, Φ𝐺𝐺 = min
𝑆𝑆 ≤𝑛𝑛/2

Φ(𝑆𝑆)

[Cheeger] Given 𝐺𝐺 with Φ𝐺𝐺 = 𝜖𝜖, 
can find 𝑆𝑆 with Φ 𝑆𝑆 ≤ 𝜖𝜖Small Set Expansion
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Small Set Expansion

• Try previous algorithm.
– Recall 1 = 𝜆𝜆1 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛 with eigenvectors 𝑣𝑣1, … , 𝑣𝑣𝑛𝑛
– Take 𝑣𝑣2 s.t. 𝐴𝐴𝑣𝑣2 = 𝜆𝜆2𝑣𝑣2.

• If 𝑣𝑣2 is sparse indicator
– E.g., indicator vector of some set 𝑆𝑆 ≤ 𝛿𝛿𝑛𝑛.
– S is a small non-expanding set!

• Even if 𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛(𝑣𝑣2, … , 𝑣𝑣𝑘𝑘) contains a sparse indicator vector for 
small 𝑘𝑘, we are good.

Φ𝛿𝛿,𝐺𝐺 = min
𝑆𝑆 ≤𝛿𝛿𝑛𝑛

Φ(𝑆𝑆)

[SSEH] Given 𝐺𝐺 with Φ𝐺𝐺,𝛿𝛿 = 𝜖𝜖, 
cannot find 𝑆𝑆 with Φ 𝑆𝑆 ≤ 1 − 𝜖𝜖.



Finding “Sparse” Vector

• Now if want to find a 
“sparse” vector in linear 
space 𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛(𝑣𝑣2, … , 𝑣𝑣𝑘𝑘).
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• What is good notion of 
“sparsity”?
– # of nonzero entries is 

too susceptible to noise.
𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛(𝑣𝑣2, … , 𝑣𝑣𝑘𝑘)

ℝ𝑛𝑛

“Sparse”
𝑣𝑣 = (1, 𝜖𝜖, 𝜖𝜖, 1, 𝜖𝜖, 𝜖𝜖, 𝜖𝜖, 𝜖𝜖)
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Norms

• Given a vector 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) and 
𝑠𝑠 ≥ 1,
– ||𝑥𝑥||𝑝𝑝 ≔ ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 𝑝𝑝 1/𝑝𝑝.
– ||𝑥𝑥||∞ ≔ max

𝑖𝑖
𝑥𝑥𝑖𝑖 .

• Facts
– ||𝑥𝑥||𝑝𝑝 ≥ ||𝑥𝑥||𝑞𝑞 if 𝑠𝑠 ≤ 𝑞𝑞
– For 𝑞𝑞 > 𝑠𝑠, ||𝑥𝑥||𝑞𝑞/||𝑥𝑥||𝑝𝑝 is maximized 

when 𝑥𝑥 has only one nonzero entry.
– For 𝑞𝑞 < 𝑠𝑠, ||𝑥𝑥||𝑞𝑞/||𝑥𝑥||𝑝𝑝 is maximized 

when it is well-spread (i.e., 𝑥𝑥1 =
𝑥𝑥2 = ⋯ = |𝑥𝑥𝑛𝑛|)
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• Given a vector 𝑥𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) and 
𝑠𝑠 ≥ 1,
– ||𝑥𝑥||𝑝𝑝 ≔ ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 𝑝𝑝 1/𝑝𝑝.
– ||𝑥𝑥||∞ ≔ max

𝑖𝑖
𝑥𝑥𝑖𝑖 .

• Facts
– ||𝑥𝑥||𝑝𝑝 ≥ ||𝑥𝑥||𝑞𝑞 if 𝑠𝑠 ≤ 𝑞𝑞
– For 𝑞𝑞 > 𝑠𝑠, ||𝑥𝑥||𝑞𝑞/||𝑥𝑥||𝑝𝑝 is maximized 

when 𝑥𝑥 has only one nonzero entry.
– For 𝑞𝑞 < 𝑠𝑠, ||𝑥𝑥||𝑞𝑞/||𝑥𝑥||𝑝𝑝 is maximized 

when it is well-spread (i.e., 𝑥𝑥1 =
𝑥𝑥2 = ⋯ = |𝑥𝑥𝑛𝑛|)

1 0 0 0 0

||𝑥𝑥||1 = 1, ||𝑥𝑥||2 = 1, ||𝑥𝑥||4 = 1

||𝑥𝑥||1
||𝑥𝑥||2

= 1,
||𝑥𝑥||4
||𝑥𝑥||2

= 1

1/ 5 1/ 5 1/ 5 1/ 5 1/ 5

||𝑥𝑥||1 = 5, ||𝑥𝑥||2 = 1, ||𝑥𝑥||4 = 1/4 5

||𝑥𝑥||1
||𝑥𝑥||2

= 5 = 2.24 ,
||𝑥𝑥||4
||𝑥𝑥||2

=
1
4 5

= 0.66



Small Set Expansion

• Now if want to find a 
“sparse” vector in linear 
space 𝑉𝑉 ⊆ ℝ𝑛𝑛.

• What is good notion of 
“sparsity”?
– # of nonzero entries is 

too susceptible to noise.
𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛(𝑣𝑣2, … , 𝑣𝑣𝑘𝑘)

ℝ𝑛𝑛

“Sparse”
𝑣𝑣 = (1, 𝜖𝜖, 𝜖𝜖, 1, 𝜖𝜖, 𝜖𝜖, 𝜖𝜖, 𝜖𝜖)



Small Set Expansion

• Now if want to find a 
“sparse” vector in linear 
space 𝑉𝑉 ⊆ ℝ𝑛𝑛.

• What is good notion of 
“sparsity”?
– # of nonzero entries is 

too susceptible to noise.
– ||𝑥𝑥||𝑞𝑞/||𝑥𝑥||𝑝𝑝 is large 

when 𝑞𝑞 > 𝑠𝑠.

𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛(𝑣𝑣2, … , 𝑣𝑣𝑘𝑘)

ℝ𝑛𝑛

“Sparse”
𝑣𝑣 = (1, 𝜖𝜖, 𝜖𝜖, 1, 𝜖𝜖, 𝜖𝜖, 𝜖𝜖, 𝜖𝜖)

||𝑣𝑣||𝑞𝑞/||𝑣𝑣||𝑝𝑝 must be large!



Small Set Expansion

• Now if want to find a 
“sparse” vector in linear 
space 𝑉𝑉 ⊆ ℝ𝑛𝑛.

• What is good notion of 
“sparsity”?
– # of nonzero entries is 

too susceptible to noise.
– ||𝑥𝑥||𝑞𝑞/||𝑥𝑥||𝑝𝑝 is large 

when 𝑞𝑞 > 𝑠𝑠.

• (𝑠𝑠 = 2) Let 𝐴𝐴 be matrix 
whose columns form 
orthonormal basis of V.
– ∀𝑥𝑥: ||𝐴𝐴𝑥𝑥||2 = ||𝑥𝑥||2.
– 𝐴𝐴𝑥𝑥 ∈ 𝑉𝑉

• So, finding a “sparse 
vector” in 𝑉𝑉 became 
finding 𝑥𝑥 that maximizes 

||𝐴𝐴𝑥𝑥||𝑞𝑞
||𝐴𝐴𝑥𝑥||2

=
||𝐴𝐴𝑥𝑥||𝑞𝑞
||𝑥𝑥||2



Operator Norms

• For matrix 𝐴𝐴, and 𝑠𝑠, 𝑞𝑞, 

||𝐴𝐴||𝑝𝑝→𝑞𝑞 ≔ max
𝑥𝑥≠0

||𝐴𝐴𝑥𝑥||𝑞𝑞
||𝑥𝑥||𝑝𝑝

= max
𝑥𝑥:||𝑥𝑥||𝑝𝑝=1

||𝐴𝐴𝑥𝑥||𝑞𝑞

– Can we (approximately) compute it?

• Connections to machine learning, quantum computing, etc. 
– When 𝑞𝑞 is even integer, ||𝐴𝐴𝑥𝑥||𝑞𝑞

𝑞𝑞 is degree-𝑞𝑞 polynomial in 𝑥𝑥!

• [BBHKSZ 12] When 𝑠𝑠 = 2, 𝑞𝑞 > 2, a good (constant) approx. 
algorithm to compute ||𝐴𝐴||𝑝𝑝→𝑞𝑞 solves Small Set Expansion.



Approximating ||𝑨𝑨||𝒑𝒑→𝒒𝒒
• 𝑠𝑠 = 𝑞𝑞 = 2: spectral norm.
• 𝑠𝑠 ≥ 𝑞𝑞: well-understood.

– 𝑠𝑠 ≥ 2 ≥ 𝑞𝑞: 𝐾𝐾𝐺𝐺-approx. (1.67 ≤ 𝐾𝐾𝐺𝐺 ≤
1.79)

– Otherwise: No 𝑐𝑐-approx. is possible for 
any 𝑐𝑐 > 1.

• [BGGLT 19] If 2 < 𝑠𝑠 < 𝑞𝑞 or 𝑠𝑠 < 𝑞𝑞 <
2, 
– No 𝑐𝑐-approx. is possible for any 𝑐𝑐 > 1.
– First NP-hardness for  𝑠𝑠 < 𝑞𝑞
– Don’t cover 𝑠𝑠 = 2, 𝑞𝑞 > 2.



Approximating ||𝑨𝑨||𝒑𝒑→𝒒𝒒
• 𝑠𝑠 = 𝑞𝑞 = 2: spectral norm.
• 𝑠𝑠 ≥ 𝑞𝑞: well-understood.

– 𝑠𝑠 ≥ 2 ≥ 𝑞𝑞: 𝐾𝐾𝐺𝐺-approx. (1.67 ≤ 𝐾𝐾𝐺𝐺 ≤
1.79)

– Otherwise: No 𝑐𝑐-approx. is possible for 
any 𝑐𝑐 > 1.

• [BGGLT 19] If 2 < 𝑠𝑠 < 𝑞𝑞 or 𝑠𝑠 < 𝑞𝑞 <
2, 
– No 𝑐𝑐-approx. is possible for any 𝑐𝑐 > 1.
– First NP-hardness for  𝑠𝑠 < 𝑞𝑞
– Don’t cover 𝑠𝑠 = 2, 𝑞𝑞 > 2.



One-line intuitions for proofs

• 𝑠𝑠 ≥ 𝑞𝑞 : Closer to “discrete problems”!
– When 𝑠𝑠 = ∞, ||𝑥𝑥||∞ ≤ 1 means 𝑥𝑥𝑖𝑖 ∈ [−1, +1] for every 𝑖𝑖

• WLOG, can even assume 𝑥𝑥𝑖𝑖 ∈ −1, +1
– Tools from discrete problems work when 𝑠𝑠 ≥ 𝑞𝑞.

• [BGGLT 19] Hardness for 2 < 𝑠𝑠 < 𝑞𝑞
– It is hard to find 𝑥𝑥 with ||𝑥𝑥||𝑝𝑝 = 1 with large ||𝐴𝐴𝑥𝑥||2.
– Dvoretzky’s theorem: If 𝐵𝐵 is a “random matrix”, then ||𝐵𝐵𝑦𝑦||𝑞𝑞 ≈ ||𝑦𝑦||2
– It is hard to find 𝑥𝑥 with ||𝑥𝑥||𝑝𝑝 = 1 with large ||𝐵𝐵𝐴𝐴𝑥𝑥||𝑞𝑞!
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Quadratic optimization over general norm
- ||𝐴𝐴||𝑝𝑝→2:  Easy when 𝑠𝑠 ≥ 2 (𝐾𝐾𝐺𝐺-approx. 1.67 ≤ 𝐾𝐾𝐺𝐺 ≤ 1.79) but 

(believed to be) hard when 𝑠𝑠 < 2.
- Can we generalize “𝑠𝑠”?
• Let 𝐵𝐵 ⊆ ℝ𝑛𝑛 be a symmetric (𝐵𝐵 = −𝐵𝐵) convex set.

• Defines a general “norm”: ||𝑥𝑥||𝐵𝐵 = (smallest 𝑡𝑡 > 0 s.t. 𝑥𝑥/𝑡𝑡 ∈ 𝐵𝐵)
• Example: Unit ℓ𝑝𝑝 ball {𝑥𝑥: ||𝑥𝑥||𝑝𝑝 ≤ 1}.

• Input: 𝑚𝑚 × 𝑛𝑛-matrix 𝐴𝐴.
• Output: 𝑥𝑥 ∈ 𝐵𝐵 that maximizes ||𝐴𝐴𝑥𝑥||2.
• Which 𝐵𝐵 allows 𝑂𝑂 1 -approximation?



• Let 𝐵𝐵 ⊆ ℝ𝑛𝑛 be a symmetric (𝐵𝐵 = −𝐵𝐵) convex set.
• Input: 𝑚𝑚 × 𝑛𝑛-matrix 𝐴𝐴.
• Output: 𝑥𝑥 ∈ 𝐵𝐵 that maximizes ||𝐴𝐴𝑥𝑥||2.
• Which 𝐵𝐵 allows 𝑂𝑂 1 -approximation?
• Answer [BLN 21]: When B is “fatter” than ℓ2 ball! 

• Using notion of “type” from functional analysis
• Can handle more general norms (e.g., when 𝑥𝑥 is matrix)!

Tools from 
discrete 

optimization

Reduction from ℓ𝒑𝒑
with 𝒑𝒑<2

Quadratic optimization over general norm
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Conclusion

• Continuous and Discrete optimization
– This talk: through operator norms
– Other connections (e.g., Max-flow, TSP)

• (Approximately) finding global optimum for 
non-convex functions
– Many viewpoints: Statistics, Optimization, 

Machine learning, Physics, Pure math, CS, etc.
– Important to build “bridges”. 

• Recently started to talk to each other..

– Exciting time to study!



Thank you!
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