Connections between discrete and continuous optimization

Euiwoong Lee University of Michigan

"CS Theory"

- "Theoretical Computer Science" (TCS) / "Theory of Computing" (ToC)
- What do we do?
 - We prove theorems about computation

STOC/FOCS/SODA community

- Sometimes called "algorithms and complexity"
 - STOC (Symp. on Theory of Computing, since 1969)
 - FOCS (symp on Foundations of Computer Science, since 1960)
 - SODA (Symp. on Discrete Algorithms, since 1990)
- Other significant communities of TCS
 - Logic and theory of programming languages
 - Optimization/numerical analysis
 - Information/coding/control/systems performance theory

Theory [off | on]

Algorithms & complexity	~
 Cryptography 	
Logic & verification	

csrankings.org

Influence from Mathematics

- Everything you claim should be proved.
- Authors are ordered alphabetically.
- Some papers are published in math journals
- Avi Wigderson and László Lovász won 2021 Abel Prize.
 - Avi's PhD is from Computer Science!

A "typical paper" looks like...

- "Task/problem" that you want to do with computers
 - Finding shortest path, factoring integer, finding optimal parameters for neural nets
 - Any well-defined "function" specifying (valid input) => (desired output)
- "Model of computation"
 - (poly-time/randomized/non-deterministic) Turing machine
 - streaming/online/dynamic
 - distributed/parallel
 - quantum
 - crypto/communication
 - market/brain/evolution (computational lens)
- Can do it (there's an algorithm) or cannot do it (there's no algorithm)!

Some cool recent things

- Computing Maximum Flow of graph G = (V, E)
 - [Ford-Fulkerson 56] O(|E|f) where f is max flow --- not poly-time
 - [Dinitz 70, Edmonds-Karp 72] $O(|V|^2|E|)$
 - ...
 - [CKLPPS 22] $O(|E|^{1.0001})$
 - Combination of interior point method (continuous) + graph theory (discrete)
- Traveling Salesperson Problem (TSP)
 - Given G = (V, E), find shortest tour that visits every vertex at least once.
 - [Christofides 76] 1.5-approximation
 - [KKO 21] $(1.5 10^{-36})$ -approximation!
 - Combination of graph cut representation (discrete) + realstable polynomials (continuous).

Plan

Plan

- Minimization
- Input
 - (Undir.) Graph G = (V, E)
- Output
 - Subset U of V such that
 - U intersects (covers) every edge!
- Objective Function
 - Cardinality of U

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
 - Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
 - Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
 - Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
 - Including all edges incident on them
- Repeat until G has no edge.

- Choose an edge in G
- Add both endpoints to U.
- Delete these two vertices from G,
 - Including all edges incident on them
- Repeat until G has no edge.

- Let p = # of blue (chosen) edges
 - |U| = 2p
 - Every Vertex Cover has to contain at least one vertex from each blue edge!
 - All blue edges do not share a vertex
 - OPT ≥ p.
 - − Therefore, $|U| \le 20$ PT.

Example 2: Max Cut

- Maximization
- Input
 - Graph G = (V, E)
- Output
 - Coloring V \rightarrow {B, R}
- Objective Function
 - # of edges between Blue and Red

Example 2: Max Cut

- For each v, randomly (and independently) color B or R.
- Each edge is (B-R) with probability 0.5.
 - 0.5-approximation
- [GW94] Semidefinite programming $\min_{0 \le x \le 1} \frac{1}{\pi} \arccos(1 - 2x) \approx 0.878$

Big Open Questions

- Can we do better?
 - 1.99-approximation for Vertex Cover
 - 0.879 for Max-Cut

Probably not!

	Vertex Cover	Max Cut
Algorithm	2	0.878 (GW 94)
NP-Hardness	1.36 (DS 05)	0.941(TSSW01)
UG-Hardness	2 (KR 08)	0.878(KKMO07)

- [Khot 02] Unique Games Conjecture (UGC).
- [KR08, KKMO07] Tight hardness for Vertex Cover and Max-Cut assuming UGC

Probably not!

	Vertex Cover	Max Cut
Algorithm	2	0.878 (GW 94)
NP-Hardness	1.36 (DS 05)	0.941(TSSW01)
UG-Hardness	2 (KR 08)	0.878(KKMO07)

- [Khot 02] Unique Games Conjecture (UGC).
- [KR08, KKMO07] Tight hardness for Vertex Cover and Max-Cut assuming UGC

Plan

Plan

- [RS 10] Small Set Expansion Hypothesis (SSEH)
 - − SSEH \Rightarrow UGC \Rightarrow (optimal hardness for ...)
 - Don't know whether SSEH \leftarrow UGC
- Will focus on SSEH..

Spectral Graph Theory 101

- Let G = (V, E) be a d-regular graph. (n = |V|)
- Given $S \subseteq V$,

$$-\Phi(S) \coloneqq \frac{|E(S,V\setminus S)|}{d|S|}$$

- Note that $0 \le \Phi(S) \le 1$
- *S* is "expanding" when $\Phi(S) \approx 1$.
- Fair to consider S with $|S| \leq n/2$.
- $\Phi_G = \min_{|S| \le n/2} \Phi(S)$
 - Expansion of "the least expanding set"

Spectral Graph Theory 101

- Let G = (V, E) be a d-regular graph. (n = |V|)
- Given $S \subseteq V$,

$$-\Phi(S) \coloneqq \frac{|E(S,V\setminus S)|}{d|S|}$$

- Note that $0 \le \Phi(S) \le 1$
- *S* is "expanding" when $\Phi(S) \approx 1$.
- Fair to consider S with $|S| \leq n/2$.
- $\Phi_G = \min_{|S| \le n/2} \Phi(S)$
 - Expansion of "the least expanding set"

Spectral Graph Theory 101

- Let G = (V, E) be a d-regular graph. (n = |V|)
- Given $S \subseteq V$,
 - $-\Phi(S) \coloneqq \frac{|E(S,V\setminus S)|}{d|S|}$
 - Note that $0 \le \Phi(S) \le 1$
 - *S* is "expanding" when $\Phi(S) \approx 1$.
 - Fair to consider S with $|S| \leq n/2$.
- $\Phi_G = \min_{|S| \le n/2} \Phi(S)$
 - Expansion of "the least expanding set"

$\Phi(S) = \frac{|E(S,V \setminus S)|}{d|S|}, \, \Phi_G = \min_{|S| \le n/2} \Phi(S)$

SGT 101

- "Expansion problem"
 - Given *G* with $\Phi_G \leq \epsilon$,
 - Find T s.t.
 - $|T| \le n/2$
 - $\Phi(T) \leq \epsilon'$
 - Want $\epsilon' \to 0$ as $\epsilon \to 0$.
- [Cheeger's inequality] Can solve "Expansion problem" with $\epsilon'=\sqrt{\epsilon}$

SGT 101

- Given *d*-regular *G*, consider normalized adjacency matrix *A*.
 *A*_{i,j} = 1/*d* if (*i*, *j*) ∈ *E*.
- Let $\lambda_1 \geq \cdots \geq \lambda_n$ eigenvalues of A

$$-\lambda_1 = 1 (Ax = x \text{ when } x = (1,1,...,1)).$$

SGT 101

- Given *d*-regular *G*, consider normalized adjacency matrix *A*.
 *A*_{i,j} = 1/*d* if (*i*, *j*) ∈ *E*.
- Let $\lambda_1 \geq \cdots \geq \lambda_n$ eigenvalues of A

$$-\lambda_1 = 1 (Ax = x \text{ when } x = (1,1,...,1)).$$

SGT 101

- Given *d*-regular *G*, consider normalized adjacency matrix *A*.
 *A*_{i,j} = 1/*d* if (*i*, *j*) ∈ *E*.
- Let $\lambda_1 \geq \cdots \geq \lambda_n$ eigenvalues of A

$$-(Ax)_i = \frac{1}{d} \sum_{(i,j) \in E} x_j$$

• "Average *x*-value of nbrs"

SGT 101 -Intuition

• $(Ax)_i = \frac{1}{d} \sum_{(i,j) \in E} x_j$

- "Average value of nbrs"

- If x is indicator vector of "expanding set" S,
 - -Ax will have not much values in S
 - -x and Ax are "far"

 $\Phi(S) = \frac{|E(S,V \setminus S)|}{d|S|}, \ \Phi_G = \min_{|S| \le n/2} \Phi(S)$ [Cheeger] Given G with $\Phi_G = \epsilon$, can find *S* with $\Phi(S) \leq \sqrt{\epsilon}$

С

SGT 101 -Intuition

- If x is indicator vector of "nonexpanding set" S,
 - -Ax will have some values in S
 - -x and Ax are "close"
 - Large eigenvalue and its eigenvector!
- [Cheeger] Converse of above
 - If $x \approx Ax$ and far from (1, ..., 1),
 - E.g., $\lambda_2 x = A x$,
 - x is "close" to indicator vector of non-expanding small set S.

- $\Phi_{\delta,G} = \min_{|S| \le \delta n} \Phi(S).$
 - $\operatorname{So} \Phi_G = \Phi_{1/2,G}.$
- Q] Is there Cheeger-type algorithm?
 - Given $\Phi_{\delta,G} = \epsilon$, find *T* with
 - $|\mathsf{T}| \leq \delta n, \Phi(T) \leq \epsilon'.$
- [RS10] (SSE Hypothesis)
 - $\begin{array}{l} \ \forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t. given } G \ \text{with} \\ \Phi_{\delta,G} = \epsilon, \end{array}$
 - NP-hard to find T with $|T| \le \delta n$, $\Phi(T) \le 1 - \epsilon$

$$\Phi(S) = \frac{|E(S,V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2} \Phi(S)$$

[Cheeger] Given *G* with $\Phi_G = \epsilon$,
can find *S* with $\Phi(S) \le \sqrt{\epsilon}$

- $\Phi_{\delta,G} = \min_{|S| \le \delta n} \Phi(S).$
 - $\operatorname{So} \Phi_G = \Phi_{1/2,G}.$
- Q] Is there Cheeger-type algorithm?
 - Given $\Phi_{\delta,G} = \epsilon$, find *T* with
 - $|\mathsf{T}| \leq \delta n, \Phi(T) \leq \epsilon'.$
- [RS10] (SSE Hypothesis)
 - $\begin{array}{l} \ \forall \epsilon > 0, \ \exists \delta > 0 \ \text{s.t. given } G \ \text{with} \\ \Phi_{\delta,G} = \epsilon, \end{array}$
 - NP-hard to find T with $|T| \le \delta n$, $\Phi(T) \le 1 - \epsilon$

$$\Phi(S) = \frac{|E(S,V \setminus S)|}{d|S|}, \Phi_G = \min_{|S| \le n/2} \Phi(S)$$

[Cheeger] Given *G* with $\Phi_G = \epsilon$,
can find *S* with $\Phi(S) \le \sqrt{\epsilon}$

$\Phi_{\delta,G} = \min_{|S| \le \delta n} \Phi(S)$ [SSEH] Given *G* with $\Phi_{G,\delta} = \epsilon$, *cannot* find *S* with $\Phi(S) \le 1 - \epsilon$.

- Try previous algorithm.
 - Recall $1=\lambda_1\geq \cdots \geq \lambda_n$ with eigenvectors v_1,\ldots,v_n
 - Take v_2 s.t. $Av_2 = \lambda_2 v_2$.
- If v_2 is *sparse indicator*
 - E.g., indicator vector of some set $|S| \leq \delta n$.
 - S is a small non-expanding set!
- Even if span(v₂, ..., v_k) contains a sparse indicator vector for small k, we are good.

Finding "Sparse" Vector

 Now if want to find a "sparse" vector in linear space span(v₂,...,v_k).

Finding "Sparse" Vector

- Now if want to find a "sparse" vector in linear space V ⊆ ℝⁿ.
- What is good notion of "sparsity"?
 - # of nonzero entries is too susceptible to noise.

 \mathbb{R}^{n}

Finding "Sparse" Vector

- Now if want to find a "sparse" vector in linear space V ⊆ ℝⁿ.
- What is good notion of "sparsity"?
 - # of nonzero entries is too susceptible to noise.

 \mathbb{R}^{n}

Norms

- Given a vector $x = (x_1, \dots, x_n)$ and $p \ge 1$,
 - $||x||_p \coloneqq (\sum_{i=1}^n |x_i|^p)^{1/p}.$
 - $||x||_{\infty} \coloneqq \max_{i} |x_{i}|.$
- Facts
 - $||x||_p \ge ||x||_q \text{ if } p \le q$
 - For q > p, $||x||_q / ||x||_p$ is maximized when x has only one nonzero entry.
 - For q < p, $||x||_q / ||x||_p$ is maximized when it is *well-spread* (i.e., $|x_1| = |x_2| = \cdots = |x_n|$)

Norms

- Given a vector $x = (x_1, \dots, x_n)$ and $p \ge 1$,
 - $||x||_p \coloneqq (\sum_{i=1}^n |x_i|^p)^{1/p}.$
 - $||x||_{\infty} \coloneqq \max_{i} |x_{i}|.$
- Facts
 - $||x||_p \ge ||x||_q \text{ if } p \le q$
 - For q > p, $||x||_q/||x||_p$ is maximized when x has only one nonzero entry.
 - For q < p, $||x||_q / ||x||_p$ is maximized when it is *well-spread* (i.e., $|x_1| = |x_2| = \cdots = |x_n|$)

1	0	0	0	0

$$||x||_1 = 1, ||x||_2 = 1, ||x||_4 = 1$$

$$\frac{||x||_1}{||x||_2} = 1, \qquad \frac{||x||_4}{||x||_2} = 1$$

Small Set Expansion

- Now if want to find a "sparse" vector in linear space V ⊆ ℝⁿ.
- What is good notion of "sparsity"?
 - # of nonzero entries is too susceptible to noise.

 \mathbb{R}^{n}

Small Set Expansion

- Now if want to find a "sparse" vector in linear space V ⊆ ℝⁿ.
- What is good notion of "sparsity"?
 - # of nonzero entries is too susceptible to noise.
 - $||x||_q / ||x||_p \text{ is large}$ when q > p.

 \mathbb{R}^{n}

 $||v||_q/||v||_p$ must be large!

Small Set Expansion

- Now if want to find a "sparse" vector in linear space V ⊆ ℝⁿ.
- What is good notion of "sparsity"?
 - # of nonzero entries is too susceptible to noise.
 - $||x||_q / ||x||_p \text{ is large}$ when q > p.

- (p = 2) Let A be matrix whose columns form orthonormal basis of V.
 - $\forall x: ||Ax||_2 = ||x||_2.$ $- Ax \in V$
- So, finding a "sparse vector" in V became finding x that maximizes $\frac{||Ax||_q}{||Ax||_2} = \frac{||Ax||_q}{||x||_2}$

Operator Norms

- For matrix *A*, and *p*, *q*, $||A||_{p \to q} \coloneqq \max_{x \neq 0} \frac{||Ax||_q}{||x||_p} = \max_{x:||x||_p=1} ||Ax||_q$
 - Can we (approximately) compute it?
- Connections to machine learning, quantum computing, etc. — When q is even integer, $||Ax||_q^q$ is degree-q polynomial in x!
- [BBHKSZ 12] When p = 2, q > 2, a good (constant) approx. algorithm to compute $||A||_{p \to q}$ solves Small Set Expansion.

Approximating $||A||_{p \to q}$

- p = q = 2: spectral norm.
- $p \ge q$: well-understood.
 - p ≥ 2 ≥ q: K_G -approx. (1.67 ≤ $K_G ≤$ 1.79)
 - Otherwise: No *c*-approx. is possible for any c > 1.
- [BGGLT 19] If 2
 - No *c*-approx. is possible for any c > 1.
 - First NP-hardness for p < q
 - Don't cover p = 2, q > 2.

Approximating $||A||_{p \to q}$

- p = q = 2: spectral norm.
- $p \ge q$: well-understood.
 - p ≥ 2 ≥ q: K_G -approx. (1.67 ≤ $K_G ≤$ 1.79)
 - Otherwise: No *c*-approx. is possible for any c > 1.
- [BGGLT 19] If 2 or <math>p < q < 2,
 - No *c*-approx. is possible for any c > 1.
 - First NP-hardness for p < q
 - Don't cover p = 2, q > 2.

One-line intuitions for proofs

- $p \ge q$: Closer to "discrete problems"!
 - When $p = \infty$, $||x||_{\infty} \le 1$ means $x_i \in [-1, +1]$ for every i
 - WLOG, can even assume $x_i \in \{-1, +1\}$
 - Tools from discrete problems work when $p \ge q$.
- [BGGLT 19] Hardness for 2
 - It is hard to find x with $||x||_p = 1$ with large $||Ax||_2$.
 - Dvoretzky's theorem: If B is a "random matrix", then $||By||_q \approx ||y||_2$
 - It is hard to find x with $||x||_p = 1$ with large $||BAx||_q!$

Quadratic optimization over general norm

- $||A||_{p\to 2}$: Easy when $p \ge 2$ (K_G -approx. 1.67 $\le K_G \le 1.79$) but (believed to be) hard when p < 2.
- Can we generalize "p"?
- Let $B \subseteq \mathbb{R}^n$ be a symmetric (B = -B) convex set.
 - Defines a general "norm": $||x||_B = (\text{smallest } t > 0 \text{ s.t. } x/t \in B)$
 - Example: Unit ℓ_p ball $\{x: ||x||_p \le 1\}$.
- Input: $m \times n$ -matrix A.
- Output: $x \in B$ that maximizes $||Ax||_2$.
- Which *B* allows *O*(1)-approximation?

Quadratic optimization over general norm

- Let $B \subseteq \mathbb{R}^n$ be a symmetric (B = -B) convex set.
- Input: $m \times n$ -matrix A.
- Output: $x \in B$ that maximizes $||Ax||_2$.
- Which *B* allows *O*(1)-approximation?
- Answer [BLN 21]: When B is "fatter" than ℓ_2 ball!
 - Using notion of "type" from functional analysis
 - Can handle more general norms (e.g., when x is matrix)!

Conclusion

- Continuous and Discrete optimization
 - This talk: through operator norms
 - Other connections (e.g., Max-flow, TSP)
- (Approximately) finding global optimum for non-convex functions
 - Many viewpoints: Statistics, Optimization,
 Machine learning, Physics, Pure math, CS, etc.
 - Important to build "bridges".
 - Recently started to talk to each other..
 - Exciting time to study!

Thank you!

