
High	level	abstractions	for	
irregular	computations

David	Padua
Department	of	Computer	Science

University	of	Illinois	at	Urbana-Champaign



1.	INTRODUCTION:	THE	PROBLEM

2December	4,	2017



Programming	for	performance

• Is	laborious
– Particularly	so	when	the	target	machine	is	parallel.

• Must	decide	what	to	execute	in	parallel
• In	what	order	to	traverse	the	data
• How	to	partition	the	data	…

• Today,	tuning	must	be	done	manually.
• Maintenance	is	difficult	

– and	the	result	is	not	portable.	

3December	4,	2017



Programming	for	performance

• There	is	still	much	room	for	progress	in	high	
performance	programming	methodology.

• Our	goal	is	to	facilitate	(automate)	tuning	and	
enable	machine	independent	programming.

4December	4,	2017



2.	IRREGULAR	COMPUTATIONS

5December	4,	2017



What	are	irregular	computations	?

• Irregular	computations	are	difficult	to	define.
• One	possible	definition	is:

– Computations	on	“irregular”	data	structures.
– Irregular	data	structures	=	not	dense	arrays.

• Pingali et	al.	The	tao of	parallelism	in	algorithms.	
PLDI’11

– And	subscript	expressions	non-linear.

6December	4,	2017



What	are	irregular	computations	?

• Examples	include
– Subscripted	subscripts:		

• A[C[i]]
– Linked	lists	traversal:	

• leftCell = leftCell->ColNext;
• result+=leftCell->Value; 
 

7December	4,	2017



Programming	irregular	computations	
for	performance

• Today,	programming	of	irregular	computations	is	
typically	at	a	low	level	of	abstraction.

8
G.	Hager	and	G.	Wellein.	Introduction	to	High	Performance	Computing	for
Scientists	and	Engineers.CRC Press

do diag=1,Nj, 2    ! two-way unroll amd Jam
diaglen=min(  ( jd_ptr(diag+1)-jd_ptr(diag) ) , \

( jd_ptr(diag+2)-jd+ptr(diag+1) )    )
offset1  = jd_ptr(diag)  - 1
offset2  = jd_ptr(diag+1) - 1
do i=1, diagLen

C(i) = C(i) + val(offset1+i)*B(col_idx(offsetr1+i))
C(i) = C(i) + val(offset2+i)*B(col_idx(offset2+i))

end do
! peeled off iterations
offset1 = jd_ptr(diag)
do i=(diagLen+1), (jd_ptr(diag+1)-jd_ptr(diag))

C(i) = C(i)+val(offset1+i)*B(col_idx(offswt1+i))
end do

end do

December	4,	2017



Programming	irregular	computations	
for	performance

• Programming	and	optimizing	irregular	computations	more	
challenging	than	for	linear-subscripts	computations.

• Want	to	have	compiler	support	for	programming	at	a low	level	of	
abstraction	to	enable	
– Automatically	mapping	computation	onto	diverse	machine	classes
– Locality	enhancement
– Other	compiler	optimizations	(e.g.	common	subexpression eliminations)

• In	addition,	often	using	higher	levels	of	abstractions	and	
applying	optimizations	at	that	level	is	a	better	solution.

• Both	approaches	will	be	discussed	in	this	presentation

9December	4,	2017



When	computations	are	not	irregular

• Compiler	can	do	a	good	job	at	transforming	programs:
– Loop	interchange
– Loop	distribution
– Tiling	
– …

• And	we	have	the	the	technology	to	generate	efficient		
code	for	a	variety	of	platforms	even	when	the	initial	
code	is	sequential
– Vector	extensions
– Multicores
– Distributed	memory	machines
– GPUs

10December	4,	2017



Example
Automatic	transformation	of	a	regular	computation	

• Consider	the	loop

for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j-1]+a[i-1][j];
}}

11December	4,	2017



for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j-1]+a[i-1][j];
}}

a[1][1]	=	a[1][0]	+	a[0][1]	

a[1][2]	=	a[1][1]	+	a[0][2]	

a[1][3]	=	a[1][2]	+	a[0][3]	

a[1][4]	=	a[1][3]	+	a[0][4]	

12

j=1

j=2

j=3

j=4

a[2][1]	=	a[2][0]	+	a[1][1]	

a[2][2]	=	a[2][1]	+	a[1][2]	

a[2][3]	=	a[2][2]	+	a[1][3]	

a[2][4]	=	a[2][3]	+	a[1][4]	

i=1 i=2

• Compute	dependences	(part	1)

Example
Automatic	transformation	of	a	regular	computation	

December	4,	2017



for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j-1]+a[i-1][j];
}}

a[1][1]	=	a[1][0]	+	a[0][1]	

a[1][2]	=	a[1][1]	+	a[0][2]	

a[1][3]	=	a[1][2]	+	a[0][3]	

a[1][4]	=	a[1][3]	+	a[0][4]	

13

j=1

j=2

j=3

j=4

a[2][1]	=	a[2][0]	+	a[1][1]	

a[2][2]	=	a[2][1]	+	a[1][2]	

a[2][3]	=	a[2][2]	+	a[1][3]	

a[2][4]	=	a[2][3]	+	a[1][4]	

i=1 i=2

• Compute	dependences	(part	2)

Example
Automatic	transformation	of	a	regular	computation	

December	4,	2017



for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j-1]+a[i-1][j];
}}

1 2 3 4 …

1

2

3

4

j

i

14

1,1

or

Example
Automatic	transformation	of	a	regular	computation	

December	4,	2017



for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j-1]+a[i-1][j];
}}

15

• Find	parallelism

Example
Automatic	transformation	of	a	regular	computation	

December	4,	2017



for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j-1]+a[i-1][j];
}}

16

• Find	parallelism

Example
Automatic	transformation	of	a	regular	computation	

December	4,	2017



for (i=1; i<n; i++) {
for (j=1; j<n; j++) {

a[i][j]=a[i][j-1]+a[i-1][j];
}}

17

• Transform	the	code

for (k=4; k<2*n; k++) forall (i=max(2,k-n):min(n,k-2)) a[i][k-i]=...

Example
Automatic	transformation	of	a	regular	computation	

December	4,	2017



Analyzing	irregular	computations

• Analysis	of	the	following	code	is	difficult	and	
sometimes	impossible

• Dependences	are	a	function	of	the	values	of	c and	d
• In	the	absence	of	additional	information,	the	compiler	
must	assume	the	worst.

• And	this	precludes	automatic	transformations	
(parallelization,	vectorization,	data	distribution,…)	

18

for (i=1; i<n; i++) {
a[c[i]]=a[d[i]]+1;

}

December	4,	2017



Irregularity	is	a	beast	programming	
language	researchers	have	been	

fighting	for	a	long	time

19December	4,	2017



It	has	defeated	us	sometimes	

20

Ignoring	the	importance	of	irregular	computations	was	one	of	the	
Reasons	for	the	failure	of	High	Performance	Fortran

December	4,	2017



Taming	the	irregular	beast

• Compilers	and	
Runtime	(Section	3)

• Better	notations	
(Section	4)

21December	4,	2017



3.	COMPILER	AND	RUNTIME	
SOLUTIONS	FOR	LOW	LEVEL	IRREGULAR	
PROGRAMMING

22December	4,	2017



Two	approaches	to	dealing	with	
irregular	computations

• Analyzing	irregular	codes	directly
– Statically
– Dynamically

• Converting	into	higher	level	of	abstraction	
(dense	array	computations)

23December	4,	2017



Static	analysis

• In	some	cases,	it	is	possible	to	analyze	
irregular	algorithms	written	in	conventional	
notation.

• More	effort	than	for	regular/linear	subscript	
computations

24December	4,	2017



Static	analysis

25

Dependence	analysis

do k = 1, n
q = 0
do i = 1, p

if ( x(i) > 0 ) then
q = q + 1
ind(q) = i

end if
end do
do j = 1, q

x(ind(j)) = x(ind(j))* y(ind(j))
end do

end do 

December	4,	2017



Static	analysis

26

do k = 1, n
q = 0
do i = 1, p

if ( x(i) > 0 ) then
q = q + 1
ind(q) = i

end if
end do
do j = 1, q

x(ind(j)) = x(ind(j))* y(ind(j))
end do

end do 

Dependence	analysis

Need	information	about	ind(j)

December	4,	2017



Static	analysis

27

do k = 1, n
q = 0
do i = 1, p

if ( x(i) > 0 ) then
q = q + 1
ind(q) = i

end if
end do
do j = 1, q

x(ind(j)) = x(ind(j))* y(ind(j))
end do

end do 

Dependence	analysis

Need	information	about	ind(j)
Can	be	found	by	analyzing	the	program

December	4,	2017



Static	analysis

28

do i=1, n
do j=2, iblen(i)

do k=1, j-1
x(pptr(i)+k-1) = ...

end do
end do
do j=1, iblen(i)-1

do k=1, j
... = x(iblen(i)+pptr(i)+k-j-1)

end do
end do

end do

Array	privatization

December	4,	2017



Static	analysis

29

do i=1, n
do j=2, iblen(i)

do k=1, j-1
x(pptr(i)+k-1) = ...

end do
end do
do j=1, iblen(i)-1

do k=1, j
... = x(iblen(i)+pptr(i)+k-j-1)

end do
end do

end do

Array	privatization

To	decide	if	x can	be	privatized

December	4,	2017



Static	analysis

30

do i=1, n
do j=2, iblen(i)

do k=1, j-1
x(pptr(i)+k-1) = ...

end do
end do
do j=1, iblen(i)-1

do k=1, j
... = x(iblen(i)+pptr(i)+k-j-1)

end do
end do

end do

Array	privatization

To	decide	if	x can	be	privatized
Is	sufficient	to	show	that	a	write	precedes	
each	read

December	4,	2017



Static	analysis

• A	possible	approach	is	to	query	the	control	
flow	graph,	bounding	the	search.

31

Yuan	Lin	and	David	Padua.	Compiler	analysis	of	irregular	memory	accesses.	(PLDI	'00).

December	4,	2017



Dynamic	analysis

• Embedded	dependence	analysis
• Inspector	executor
• Speculation

32December	4,	2017



Embedded	dependence	analysis

• This	is	a	clever	mechanism	due	to	Zhu	and	
Yew.

33

Zhu,	C.	Q.,	&	Yew,	P.	C.	(1987).	SCHEME	TO	ENFORCE	DATA	DEPENDENCE	ON	LARGE	
MULTIPROCESSOR	SYSTEMS.	IEEE	Transactions	on	Software	Engineering,	SE-13(6),	726-739

for i=1; i<n; i++
a(k(i)) = c(i) + 1

a_tag(k(:)) = 0
parallel for i=1;i<n;i++

critical a(k(i)) 
if a_tag(k(i)) < i

a(k(i)) = c(i) + 1
a_tag(k(i)) = i

December	4,	2017



Inspector	executor

• Parallel	schedule	and	communication	
aggregation	computed	at	execution	time	
– Analyzing	the	memory	access	pattern	of	a	code	
segment	(typically	a	loop)	

• Overhead	reduced	when	the	code	segment	
(loop)	is	executed	multiple	times	with	the	
same	access	pattern

34

See	Encyclopedia	of	Parallel	Computing
Run	Time	Parallelization	(Saltz and	Das)

December	4,	2017



Speculation

• There	is	an	extensive	body	of	literature	on	speculation.
• A	code	segment	is	executed	in	parallel	in	the	hope	that	
there	is	no	problem.

• If	there	is,	execution	backtracks	and	the	code	segment	
is	re-executed	serially

See	 Lawrence	Rauchwerger,	David	A.	Padua:	The	LRPD Test:	Speculative	Run-Time	
Parallelization	of	Loops	with	Privatization	and	Reduction	Parallelization.	PLDI 1995:	
218-232

Encyclopedia	of	Parallel	Computing
Thread	level	speculation	(Torrellas)
Transactional	Memories	(Herlihy)

35December	4,	2017



Converting	into	dense	array	
computations

• The	objective	is	to	convert	sparse	
computations	into	equivalent	dense	form.

• This	increases	the	number	of	operations	
involving	zeroes	(or	identity)	
– Sometimes	making	the	computation	impossible

• But	it	allows	the	application	of	compile-time	
transformations.

• Sparsity is	recovered	by	applying	a	final	
transformation	(see	below)

36December	4,	2017



Converting	into	dense	array	
computations

37

for(col=0; col<cols; col++) {
for(row=0; row<dimensions; row++) {

leftCell = left.Rows[row];
while( leftCell != NULL ) {

result[row][col] +=leftCell->Value 
* right[leftCell->ColIndex][col];

leftCell = leftCell->ColNext;

for( col = 0; col < cols; col++ ) 
for( row = 0; row < dimensions; row++ ) 

result[row][col] += A_Valuep[row][:] * right[:][col];

December	4,	2017



Converting	into	dense	array	
computations

38

Harmen L.	A.	van	der	Spek,	Harry	A.	G.	Wijshoff:
Sublimation:	Expanding	Data	Structures	to	Enable	Data	Instance	Specific	Optimizations.	
LCPC	2010:	106-120

Anand Venkat,	Mary	Hall,	and	Michelle	Strout.	2015.	Loop	and	data	transformations	for	
sparse	matrix	code.	In Proceedings	of	the	36th	ACM	SIGPLAN	Conference	on	
Programming	Language	Design	and	Implementation(PLDI	'15).

December	4,	2017



Where	do	we	stand?

• There	is	an	extensive	body	of	literature	on	
compilation	and	runtime	to	facilitate	the	parallel	
programming	of	irregular	computations.

• Although	more	ideas	are	important,	what	we	
need	most	urgently	is	an	evaluation	of	their	
effectiveness.
– A	means	for	refinement	and	progress.

• All	compiler	techniques	suffer	from	lack	of	
understanding	of	their	effectiveness.

39December	4,	2017



Need	tools	to	evaluate	progress

• Measuring	advances	in	compiler	technology	is	
crucial	for	progress.

• An	idea:	a	publicly	available	repository
– Containing	extensive	and	representative	code	
collections.

– Keep	track	of	results	for	compilers/techniques	
along	time.

• Ongoing	work	on	one	such	repository:
– LORE:	A	Loop	Repository	for	the	Evaluation	of	Compilers	by	Z.i Chen,	Z.	Gong,	J.	

Josef	Szaday,	D.	Won,	D.	Padua,	A.	Nicolau ,	A.	Veidenbaum ,	N.	Watkinson	,	Z.	Sura,	
S.	Maleki,	J.	Torrellas,	G.	DeJong.		IISWC-2017

40December	4,	2017



4. NOTATIONS

41December	4,	2017



4. NOTATIONS
4.1	ABSTRACTION

42December	4,	2017



What	are	Programming	abstractions	?	

§ An	abstraction	is	
formed	by	reducing	
information.

§ In	everyday	life,	it	
forms	the	world	of	
ideas	where	we	can	
reason.	No	(natural	
language)	
statement	can	be	
made	without	
abstractions

43December	4,	2017



What	are	Programming	abstractions	?	

§ Abstract	machine	language/lower	level	implementation
§ Scalar	computations:	

§ a=b*c+d^3.4
§ No	loads,	stores,	register	allocation.

§ Scalar	loops:	
§ for (i= …..) {…}
§ No	if	statements,	branch/goto instructions.
§ Gives	structure	to	the	program.

§ Abstract	algorithm	implementation
§ min(A(1:n))
§ it = find (myvec.begin(), myvec.end(), 30);
§ Hide	algorithm,	data	representation

44December	4,	2017



What	are	the	benefit	of	using	
abstractions?

• Programmer	productivity	(expressiveness)
– Codes	are	easier	to	write
– To	understand,	maintain

• Portability
• Optimization	(manual	and	automatic)

– Programs	are	easier	to	analyze
– Easier	to	transform
– Deeper	transformations	are	enabled	

45December	4,	2017



Abstractions	and	irregular	
computations

• What	abstractions	should	we	use		for	
programming	irregular	computations	at	a	
higher	level?

• Best	answer	seems	to	be	to	represent	
irregular	algorithms	in	terms	of:

Dense	array	operations

46December	4,	2017



4. NOTATIONS
4.2.	ARRAY	NOTATION	AND	
IRREGULAR	COMPUTATIONS

47December	4,	2017



Why	array	notation

• Could	access	arrays	in	scalar	mode
• But	operations	on	aggregates	are	(often)	easier	to	
read.

for (i=0; i<n; i++) for (j=0;j<n;j++) 

a[i][j]=b[i][j]+c[i][j]

a=b+c

• They	are	well	understood	abstractions.
• Powerful.

48December	4,	2017



Array	operations	and	performance

• But	usefulness	of	array	notation	go	beyond	
expressiveness.

• There	are	at	least	three	reasons	to	use	array	
abstractions	for	performance
– To	represent	parallelism
– To	reduce	the	overhead	of	interpretation.
– To	enable	automatic	optimizations.

49December	4,	2017



Representation	of	parallelism
• Popular	in	the	early	days:

• Used	today	but	not	widely

• Tensor	flow	
• Futhark

– T.	Henriksen,	N.	Serup,	M.	Elsman,	F.	Henglein,	and	C.	Oancea.	Futhark:	
Purely	Functional	GPU-Programming	with	Nested	Parallelism	and	In-
Place	Array	Updates PLDI 2017

50

do 10 i = 1, 100, 2

M (i) = .true.
M (i+l) = .false.

10 continue
A(*) = B(*) + A(*)

C(M(*)) = B(M(*)) + A(M(*))

Illiac IV	Fortran

C[i][ j] = __sec_reduce_add( a[ i][:] * b[:][j]); 

Cilk plus

December	4,	2017



Array operations and optimizations
An	example

• Applying	arithmetic	rules	such	as	associativity	of	
matrix-matrix	multiplication	to	reduce	the	number	of	
operations	.		
– Which	one	is	better?	

• (((A*B)*C)*D)*E,	
• (A*((B*C)*D))*E,	
• (A*B)*((C*D)*E),
• …

– Find	best	using	dynamic	programming
– Yoichi	Muraoka	and	David	J.	Kuck.	1973.	On	the	time	
required	for	a	sequence	of	matrix	products.	Commun.	ACM	
16,	1	(January	1973),	22-26.

51December	4,	2017



Reduce	overhead	of	interpretation

• See	Haichuan Wang,	David	A.	Padua,	Peng
Wu:	Vectorization of	apply	to	reduce	
interpretation	overhead	of	R.	OOPSLA 2015:	
400-415

52December	4,	2017



Array	operations	and	irregular	
computations

• Array	operations	are	an	ideal	notation	to	
manipulate	sparse	arrays.

53December	4,	2017



Sparse	arrays	in	MATLAB
load west0479.mat
A = west0479;
S = A * A' + speye(size(A));
pct = 100 / numel(A);

figure
spy(S)
title('A Sparse Symmetric Matrix')
nz = nnz(S);
xlabel(sprintf('nonzeros = %d (%.3f%%)',nz,nz*pct));

• Arrays	appear	as	dense,	but	represented	internally	as	spaarse.
• The	interpreter	and	libraries	handle	the	sparseness

54

S = sparse(m,n)

December	4,	2017



Sparse	arrays	can	be	abstracted	as	
dense	arrays	in	compiled	languages

• Bik	and	Wijshoff*	developed	a	strategy	to	
translate	dense	array	programs	onto	sparse	
equivalents.

55

do i=1,n
acc=acc+a(i,:)*<1:n>

do i=1,n
do j=1,n

if (i,j) ∈ E a then
acc=acc+a’(σa(i,j))*j

do i=1,n
do ad∈PADa

j=π2σa-1(ad)
acc=acc+a’(ad)*j

do i=1,n
do ad=alow(i),ahigh(j)

j=aind(ad)
acc=acc+aval(ad)*j

*Aart J.	C.	Bik,	Harry	A.	G.	Wijshoff:	Compilation	Techniques	for	Sparse	Matrix	
Computations.	International	Conference	on	Supercomputing	1993:	416-424
December	4,	2017



Array	operations	and	irregular	
computations

• Not	only	can	array	notation	be	used	to	
represent	dense	computations,	it	can	be	used	
for	a	number	of	other	domains.

• A	wide	range	of	domains

56December	4,	2017



How	wide?

• At	the	time	(ca.	1959),	Illinois,	with	the	
first	of	its	‘ILLIAC’	supercomputers,	was	
a	great	centre of	computing,	and	Golub
showed	his	affection	for	his	Alma	Mater	
by	endowing	a	chair	there	50	years	later.	
Rumour has	it	that	the	funds	for	the	gift	
came	from	Google	stock	acquired	in	
exchange	for	some	advice	on	linear	
algebra.	Google’s	PageRank	search	
technology	starts	from	a	matrix	
computation	— an	eigenvalue	problem	
with	dimensions	in	the	billions.	Hardly	
surprising,	Golub would	have	said:	
everything	is	linear	algebra.	Nature	2007

57December	4,	2017



New operators
Arrays	for	graphs	algorithms

• A	simple	algorithm	for	SSSP	(Bellman-Ford)	
can	be	represented	as	follows:

58

for(i=1; i<=n; i++)
d = d ⨁ A ⨂ d

Jeremy	Kepner and	John	Gilbert.	2011.	Graph	Algorithms	in	the	Language	of	Linear	Algebra.
SIAM	Press
T.	Mattson,	D.	Bader,	J.	Berry,	A.	Buluc,	J.	Dongarra,C.	Faloutsos,	J.	Feo,	J.	Gilbert,
J.	Gonzalez,	B.Hendrickson,	J.	Kepner,	C.	Leiserson,	A.	Lumsdaine,	D.	Padua,	
S.	Poole,	Steve	Reinhardt,	M.	Stonebraker,	S.	Wallach,	A.	Yoo.	
Standards	for	Graph	Algorithm	PrimitivesDecember	4,	2017



4. NOTATIONS
4.3.	EXTENSIONS	TO	ARRAY	
NOTATION	FOR	PARALLELISM

59December	4,	2017



repmat(h, [1, 3])

circshift( h, [0, -1] )

transpose(h)

60

Communication	as	array	operations

December	4,	2017



A00 A01

A10

A20

A11

A21 A22

A12

A02 B01

B10

B20

B11

B21 B22

B12

B02B00

A00
B00

A01
B11

A02
B22

A12
B21

A11
B10

A10
B02

A22
B20

A20
B01

A21
B12

A00
B00

A01
B11

A02
B22

A12
B21

A11
B10

A10
B02

A22
B20

A20
B01

A21
B12

initial skew

shift-multiply-add

61

Cannon’s	algorithm

December	4,	2017



for k=1:n
c = c + a × b;
a = circshift(a,[0 -1]); 
b = circshift(b,[-1 0]);

end

Cannnon’s Algorithm

62

James	C.	Brodman,	G.	Carl	Evans,	Murat	Manguoglu,	Ahmed	H.	Sameh,	
María Jesús Garzarán,	David	A.	Padua:	A	Parallel	Numerical	Solver	Using	
Hierarchically	Tiled	Arrays.	LCPC 2010:	46-61

December	4,	2017



Barrier	elimination

63

X(3)=Y(3)*2X(1)=Y(1)*2 X(2)=Y(2)*2 X(4)=Y(4)*2

Z(1)=X(1) Z(2)=X(3)

Z(3)=X(2) Z(4)=X(4)

X(1:4)=Y(1:4)*2;
Z(1:2)=X([1,3]);
Z(3:4)=X([2,4]); 

December	4,	2017



Barrier	elimination

64December	4,	2017



Asynchronous	semantics

• In	some	cases,	it	could	be	desirable	to	delay	
updates	across	the	whole	machine.	At	some	
point,	a	global	update	is	made.

• This	is	a	particular	example	of	communication	
in	asynchronous	algorithms	where	data	
assignment	suffer	delays.	

65December	4,	2017



Tiled	Linear	Algebra	– SSSP	Example

// the distance vector
d = inf; d(1) = 0;
// the mask vector
L = 0; L(1) = 1;
while (L.nnz())
for i = 1:LOC_ITER
r <- d + (trans(A)*(d*.L);
L <- (r != d);
d <- r;

r += d;
L <- (r != d);
d <- r;

Partial	
multiplication

Lo
ca
l	c
om

pu
ta
tio

n	

Global	
reduction

66

Saeed Maleki,	G.	Carl	Evans,	David	A.	Padua:
Tiled	Linear	Algebra	a	System	for	Parallel	Graph	Algorithms.	LCPC	2014:	116-130December	4,	2017



4. NOTATIONS
4.3.	WHERE	DO	WE	STAND?

67December	4,	2017



Array	notation

• Array	notation	has	a	long	history
• Is	a	powerful	notation	that	can	be	used	for	a	wide	
range	of	applications.

• For	parallelism,	it	is	an	unfulfilled	promise
• The	highly	mathematical	notation	is	a	challenge
• We	see	increase	use	of	the	notation	and	expect	it	
to	become	popular	also	for	irregular	algorithms.

• Challenges:	
– develop	the	notation
– Design	compiler	optimizations

68December	4,	2017



5.	EPILOG

69December	4,	2017



• In	1976	not	much	was	known	about	parallel	
programming	of	irregular	computations.

• 40	years	later	if	is	impressive	how	much	have	
been	learned	on	compilation	and	notations.

• But	the	development	of	widely	used	tools	
based	on	these	ideas	remain	a	challenge.	

70December	4,	2017


