
平木 敬東京大学

Speculative aspects of high-speed
processor design

Kei Hiraki The University of Tokyo

Department of Creative Informatics

Graduate School of Information Science and

Technology

The University of Tokyo

平木 敬

Our goal

• Highest total system speed

– Ex. TOP500 speed,

– Application speed of supercomputers

• Highest processor chip performance

– Ex. SPEC CPU rate

– NAS parallel benchmarks

• Highest single core performance

– SPEC CPU int,

– SPEC CPU fp

– Dhrystone

Single core performance is the starting point

東京大学

x1000 in 11 years

x1.87 in a year

1 EFlops

平木 敬

Single Core Performance

• Base for all the performance improvement

• Various speed-up methods

– Faster clock frequency

• New device --- Si, GaAs, HEMT, JJ device, Optical devices

• Smaller device --- Semiconductor device width

– Intel 4004 10,000 nm

– Intel Corei7 3xxxx 22 nm

Clock speed is now saturating

–Power consumption

–Device density

東京大学

Device Technology for Memries

0.01μ

0. 1μ

1μ

10μ

Year
70 80 90 2000 2010 2020

Width

Capacity
Quantum Device

Normal Device

1T

1G

1M

1K

16K

64K

256K

1M

4M

16M

64M

256M

1G

4G

16G

Prediction byITRS
2010 2012 2014 2016 2018 2020

Metal 1 ½ pitch

(nm)

45 32 24 18.9 15 11.9

Vt (V) 0.289

EPbluk

0.291

EPbulk

0.221

UTB FD

0.202

MG

0.207

MG

0.219

MG

Vdd (V) 0.97 0.9 0.84 0.78 0.73 0.68

Power Density

(W/mm2)

0.5 0.6 0.7 0.8 0.9 1

Pin count Max 4900 5300 5900 6500 7200 7900

Performance On-

chip (GHz)

5.88 6.82 7.91 9.18 10.65 12.36

Performance Chip-

to-Board (Gb/s)

10 14 17 30 40 50

ITRS 2009 Process, Integration, Design and System / Assembly and Packaging

＊ Isd,leak = 100 uA/um

平木 敬

Power wall --- limitation of clock speed

• 100x faster clock from 1993 to 2003

– Progress of CMOS technology

• No improvement from 2003 to Now

– 150W/chip power limit

– More transistor / area size

– Faster clock requires higher threshold voltage

• High-speed 1.2V

• Low power 0.8V 40nm CMOS

東京大学
7

平木 敬

Clock speed limit

10

100

1000

10000

1993 1995 1997 1999 2001 2003 2005 2007 2009

Clock Freq of Top 10 machines of Top500

東京大学

平木 敬

Historical view of processor performance

• Performance measurements of historical and latest

processors（100 systems）
– Intel 386, 486, Pentium, Pen Pro, ………. Corei7, ATOM,Itanium II

– AMD Opteron

– SPARC Weitek 8701、microSPARCII, UltraSparc I, II, III

– Alpha 21064, 21164, 21264(EV67)

– MIPS R4000, R5000, R12000

– Power Power5, PowerPC750, 970

– ARM Tegra, iMX515,

– HP HP-PA 7100

– Motorola MC68328, MC68VZ328

※ Repair and maintenance

are the biggest problems

東京大学
9

平木 敬東京大学
10

平木 敬

Old and New systems to be measured

東京大学
11

平木 敬東京大学

Integer performance/core：Dhrystone MIPS

Year

High^
performance

Core

Embedded
core

平木 敬東京大学

Integer performance/core：Dhrystone MIPS

Year

High^
performance

Core

Embedded
core

平木 敬

Observation 1

• Performance rapidly increase till 2003
– Faster clock frequency (up to 4 GHz)

– Pipelined architecture design

– Cache memory

– Superscalar architecture

• Performance still increase from 2003

– Constant clock freq.

– Wider superscalar architecture

– Deep branch prediction

– Prefetching

– ・・・・・・

– ・・・・・・

東京大学
14

平木 敬

Performance / clock

東京大学

平木 敬東京大学

Performance / clock

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1990 1995 2000 2005 2010 2015

C
IN

T2
0

0
0

 r
at

io
 /

 M
H

z

Year

HyperSPARC

SuperSPARC-II

MIPS R4000

Pentium Pro

UltraSPARC-II PenM

POWER5

Cell BE

Pentium D

K8
Core Duo

Core 2 Duo

Tegra 250

AMD C-50

SandyBridge-E

SandyBridge

AMD FX

Atom
Cortex A8

Nehalem

Lynnfield

POWER7

TM5800

MMX P5

平木 敬東京大学

High-speed features of a processor 1

1. Pipeline design

– Sequential execution ～10 cycles/instruction

• Old computers, Intel 8080

– Basic pipelined execution 2～4 cycles/instructions

• CDC6600, Manchester MU5, MIPS and many more

– Out of order execution 1～ cycle/instruction

• IBM 360/91, Alpha 21264, most of today’s processors

– SuperScalar execution ～0.5 cycle/instruction

• Intel i960CA, Alpha21064, most of today’s processors

– VLIW ～0.3 cycle/instruction

• Multiflow, Intel Itanium

• Out of order, SuperScalar should be used with

branch prediction 18

平木 敬東京大学

High-speed features of a processor 2

2. Branch Prediction

– Branch Target Buffer Short and local history

• Manchester MU5, processors before 1995

– Two level branch prediction history and pattern table

• Intel Pentium III, and many more processos

– Gshare and Gselect Use of global history

• AMD, Pentium M, Core2,

– Perceptron predictor Machine learning

• AMD

– ITTAGE Cascaded history table

Practical use of speculative execution
19

平木 敬東京大学

High-speed features of a processor 3

3. Prefetch (hardware prefetch)

– Memory address prediction for future accesses

– Access throttling for optimal memory utilization

– Sequential Prefetcher Next block

– Stride Prefetcher Finding stride from history

– Global History Buffer Use of Global history

– Address Map Matching Current State Of The Art

Effective speculative execution

Practical use of global history
20

平木 敬東京大学

Other High-speed features

4. Cache memory, hierarchical cache memory

5. Cache replacement algorithm

– Non-LRU algorithms to eliminate dead blocks

5. DRAM Memory access scheduling

6. Network on Chip (NoC) scheduling

7. Accelerator (floating point accelerator)

Power and hardware budget

21

平木 敬

MIPS / core of a processor core

東京大学

平木 敬東京大学

Dataflow execution and Speculative execution

• Dataflow execution

– Controlled by availability of data/control

– Ideal for parallel execution

– Difficulty in latency reduction

– I am a dataflow Guru (Developed still largest

dataflow machine)

• Speculative execution

– Independent from data dependency

– Accuracy of prediction is the key

– Today’s speed-up of processors is mainly based on

speculation

23

平木 敬

Methods for speculation (prediction)

• Local history

– Past behavior of the target instruction

• Outcome of the branch instruction

• Accessed address of the load/store instruction

• Prediction based on the patterns of local history

• Global history

– Past behavior of instructions other than the target

• Other branch instruction

• Accessed address of other load/store instructions

• For accurate prediction from the first iteration of the loop

東京大学
24

Ideal form of Dynamic Scheduling

Completed instructions

Executed instruction → Dynamic instruction sequence

Executing instructions and

instructions that is wating

Instructions before

execution

Instruction Window

When a new instruction enters to the Instruction Window

・ Read registers and memory if the value on it is not

reserved by instruction within the instruction window

・ Operands produced by instructions within instruction

window are passed directly from the instruction

Inside the instruction window、
・ Execution order is decided by data-dependency

（Execution starts when all the input operand are ready）
・ If CPU has infinite resources (ALU memory etc.)

Dynamic Scheduling gives shortest execution time

・

Utilization of ILP (Instruction Level Parallelism)

Conditional branch inside Instruction Window

if then else

Loop constructs

Nested conditional branches

Example:Branch Prediction

• Speculative execution of instructions after the conditional branch

– Static branch prediction

• Compiler decides the major direction of the branch instruction

– Ａｌｐｈａ２１０６４: based on the direction of branch

（forward ⇒ Not taken、backward ⇒ taken）

– ＳＰＡＲＣ etc.: Conditional Branch has a hint bit

F D R EX W

F D R EX W

Conditional Branch

Next instruction (Success)

SSS

Actual branch outcome

F D R EXNext instruction (fail）

F D R EX W

Limitation of static branch prediction

• Speculative execution of conditional branch

– Large penalty when speculation fails

• Cancelation of speculative execution

• Keeping memory consistency by speculative execution

– Problem: High miss rate of prediction

• Loop exiting branch : Loop constructs

– 1 failure per one loop construct １／n Misprediction

• Conditional branch in loop body

– Difficult to predict statically ⇒ Profile based branch prediction

• About 80% successful prediction

History of Dynamic branch prediction

• Branch prediction table and its extension

– Manchester University, I-Unit of MU-5 computer

• Taylor, L. A. “Instruction Accessing in High Speed Computers,” MS

thesis, University of Manchester, 1969.

– Branch Target Buffer （Manchester Univ.）

• Ibbett, R. N., “The MU5 instruction pipeline,” The Computer Journal,

Vol. 15, No. 1, pp. 42-50, 1972.

– 2-level branch prediction (used in Pentium III)

• Yeh, T.-Y. and Patt, Y.N., “Two-Level Adaptive Branch Prediction”,

Proc. 24th Int. Symposium and workshop on Microarchitecture, pp. 51-

61, 1991.

– Gshare (Used in DEC Alpha)

• McFarling, “Combining Branch Predictors, “WRL Technical Note TN-36,

June 1993.

Branch prediction table（BPT or BTB）
(Branch Prediction Table, Branch Target Buffer)

• BPT Address of branch, past branch direction (counter)

• 1 bit prediction ⇒ High (x2) misprediction rate

• 2 bit prediction ⇒ Saturating counter (Bimodal prediction)

Instruction address Valid History Counter

Predicts as

Taken

Predict as

Taken

Predict as

not taken

Predict as

Not taken

not taken

not taken

not taken

Taken
Taken

Taken

taken Not Taken

Branch Target Buffer

• Branch Target Buffer (BTB)

– Table to get predicted branch target address

⇒ Zero branch prediction penalty

Address of branch (lower bits) Valid History Counter

Address of BC

Search

＝ Equality Check

Branch target

Further improvement of dynamic branch prediction

• 2 Level branch predictor (Bimodal)

– Based on patterns of local history table

– about 90% successful prediction

• small loop size

• nested loops

• 90% ⇒ about 0.35 clock penalty

2-level branch prediction

• Prediction by branch history and branch patterns

Example： ＰＡｓ（Yeh and Patt, 1992） Ｉｎｔｅｌ ＰｅｎｔｉｕｍＩＩＩ

Address of branch

Branch History Table Branch Pattern Tablei bit

j bit

k bit

2BC

Bimodal counter

Prediction result

Private Table Shared Table

Prediction miss rate ７％ （SPECint92)

Function of 2-level branch prediction

• Detection of frequent patter of branch

• Effective to short loop (loop count < Local History Length

Example：Double loop (N=4)

Branch direction ＴＴＴＮＴＴＴＮ

２ｂｃ ＴＴＴＴＴＴＴＴ ⇒ Miss rate ２５％

ＰＡｓ ＴＴＴＮＴＴＴＮ ⇒ Miss rate０％

Gshare

• Inex ofＰＨＴ ＝ address EXOR history

Ultra-SPARC3 (j:k) = (12:14)

Address of branch

Branch History

(Global) ＥＸＯＲ

12bits

14bits

Global Table

Prediction result

Miss rate is about ６％

Use of Global history

for(i=0, I < N, i++)

{loop body 1}

・・・・・・・

・・・・・・・

・・・・・・・

for(i=0, I < N, i++)

{loop body 2}

・・・・・・・

・・・・・・・

・・・・・・・

for(i=0, I < N, i++)

{loop body 2}

Hybrid branch prediction

• Combination of Local History prediction and global

history prediction

• Reliability counter for each predictor

• ＤＥＣ Ａｌｐｈａ２１２６４

• Advanced branch predictor

– Perceptron hybrid predictor --- A kind of neural

network

– TAGE, GEHL ---- Advanced (more complex) hybrid

– FTL ---- Path base predictor (Our predictor)

平木 敬

Computer Architecture Competition

Our history of competition

2012 Memory access scheduling Winner

2011 Branch prediction 2nd place

2010 Cache replacement algorithm 2nd place

2009 Prefetching Winner

2008 Branch prediction 2nd place

東京大学
38

平木 敬

Rest of this talk

1. AMPM prefetcher

Best prefetcher today

2. DRAM memory access scheduling

One of best memory access schedulers

東京大学
39

High Performance
Memory Access Scheduling
Using Compute-Phase Prediction
and Writeback-Refresh Overlap

Yasuo Ishii, Kouhei Hosokawa, Mary Inaba, Kei Hiraki

Design Goal: High Performance Scheduler

 Three Evaluation Metrics

 Execution Time (Performance)

 Energy-Delay Product

 Performance-Fairness Product

 We found several trade-offs among these metrics

 The best execution time (performance) configuration does not
show the best energy-delay product

 DRAM: Standard memory device for computers

 High Density

 Low cost

 Recent DDR3 memory has strong constraints on Row
acess
 Row buffer access timing constraint due to power consumption

DRAM memory scheduling

Structure of DDR DRAM (1channel)

Memory Cotroller

Rank
B

an
k

Row Buffer

Row

 Overhead of switching Row buffer contents

① Latency

 Row Hit access

(Row Access)
 Row Conflict access

(Row Close) → (Row Open) → (Row Access)

② Power consumption

 Re-write to DRAM cells (read modify write)

DRAM scheduling for a single core (single thread)
processor

Improvement ofRow Hit ratio is
important for a single thread

x３ latency

Non-priority requests

Priority requests

Thread-priority Control

 Thread-priority control is beneficial for multi-core chips

 Network Fair Queuing[Nesbit+ 2006], Atlas[Kim+ 2010], Thread
Cluster Memory Scheduling[Kim+ 2010]

 Typically, policies are updated periodically (Each epoch
contains millions of cycles in TCM)

Compute-
Intensive

Memory-
Intensive

Memory
(DRAM)

Memory-
Intensive

Compute-
Intensive

priority status is
not yet changed

Core 0

Core 1

high priority

Example: Memory Traffic of Blackscholes

 One application contains both memory-intensive phases
and compute-intensive phases

0

10

20

30

40

50

60

70

80

90

100

M
is

s
p

er
 K

ilo
 In

st
ru

ct
io

n
s

(M
P

K
I)

Phase-prediction result of TCM

 We think this inaccurate classification is caused by the
conventional periodically updating prediction strategy

0

10

20

30

40

50

60

70

80

90

100

M
is

s
p

er
 K

ilo
 In

st
ru

ct
io

n
s

(M
P

K
I)

Compute-phase Memory-phase

Contribution 1: Compute-Phase Prediction

 “Distance-based phase prediction” to realize fine-grain
thread priority control scheme

Core
Memory
(DRAM)

Distance = # of committed instructions between 2 memory requests

Core DRAM

Distance of req. exceed Θinterval

Compute-phase

Core DRAM

Non-distant of req. continue Θdistant times

Memory-phase

Phase-prediction of Compute-Phase Prediction

 Prediction result nearly matches the optimal classification

 Improves fairness and system throughput

0

10

20

30

40

50

60

70

80

90

100

M
is

s
p

er
 K

ilo
 In

st
ru

ct
io

n
s

(M
P

K
I)

Outline

 Proposals

 Compute-Phase Prediction

 Thread-priority control technique for multi-core processor

 Writeback-Refresh Overlap

 Mitigates refresh penalty on multi-rank memory system

 Optimizations

 MLP-aware priority control

 Memory bus reservation

 Activate throttling

DRAM refreshing penalty

 DRAM refreshing increases the stall time of read requests

 Stall of read requests increases the execution time

 Shifting refresh timing cannot reduce the stall time

 This increases the threat of stall time for read requests

tREFI tRFC

Rank-0

Rank-1

Mem. Bus

Stall of read requestsIncreases the threat of stall

Contribution 2: Writeback-Refresh Overlap

 Typically, modern controllers divide read phases and write
phases to reduce bus turnaround penalties

 Overlaps refresh command with the write phase

 Avoid to increasing the stall time of read requests

R

Rank-0

Rank-1

Mem. Bus W

Read requests stall

R W R W R W R W R W R W R

Optimization 1: MLP-Aware Priority Control

 Prioritizes Low-MLP requests to reduce the stall time.

 This priority is higher than the priority control of compute-
phase predictions

 Minimalist [Kaseridis+ 2011] also uses MLP-aware scheduling

load(1)
load(0)Core 0

Memory
(DDR3)

Core 1

load(1)

Request Queue

gives extra priority

Stall

Stall
load(1)
load (0)
load(1)
load(1)
load(1)

Optimization 2: Memory Bus Reservation

 Reserves HW resources to reduce the latency of critical
read requests

 Data bus for read and write (considering tRTR/tWTR penalty)

 This method improves the system throughput and fairness

Command-Rank-0 ACT RD

tRAS

Command-Rank-1

BL

RD

RD

RD RD

Additional penalty

Memory bus

Optimization 3: Activate Throttling

 Controls precharge / activation based on tFAW tracking
 Too early precharge command does not contribute to the latency

reduction of following activate command

Command-Rank-0

Memory clock

tFAW tRP

PREACT

1

ACT

2

ACT

3

ACT

4

 Activate throttling increases the chance of row-hit access

ACT

Row-conflict

Implementation: Optimized Memory Controller

 The optimized controller does not require large HW cost

 We mainly extend thread-priority control and controller state
through our new scheduling technique

Read Queue

Write Queue

Refresh Queue

M
U

X

Controller
State

Refresh Timer

Processor
Core

DDR3
Devices

Thread
Priority
Control

Enhanced
Controller

State

Adds priority bit
for each request

Extends controller
state (2-bit)

Implementation: Hardware Cost

 Per-channel resource (341.25B)

 Compute-Phase Prediction (258B)

 Writeback-Refresh Overlap (2-bit)

 Other features (83B)

 Per-request resource (3-bit)

 Priority bit, Row-hit bit, Timeout flag bit

 Overall Hardware Cost: 2649B

Evaluation Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1chan 4chan 1chan 4chan 1chan 4chan 1chan 4chan 1chan 4chan 1chan 4chan 4chan 4chan 1chan 4chan 1chan 4chan /

MT-
canneal

MT-
canneal

bl-bl-fr-
fr

bl-bl-fr-
fr

c1-c1 c1-c2 c1-c1-
c2-c2

c1-c1-
c2-c2

c2 c2 fa-fa-fe-
fe

fa-fa-fe-
fe

fl-fl-sw-
sw-c2-

c2-fe-fe

fl-fl-sw-
sw-c2-
c2-fe-

fe-bl-bl-
fr-fr-c1-
c1-st-st

fl-sw-
c2-c2

fl-sw-
c2-c2

st-st-st-
st

st-st-st-
st

Overall

Total Execution Time

FCFS Close Proposed

Evaluation Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1chan 4chan 1chan 4chan 1chan 4chan 1chan 4chan 1chan 4chan 1chan 4chan 4chan 4chan 1chan 4chan 1chan 4chan /

MT-
canneal

MT-
canneal

bl-bl-fr-
fr

bl-bl-fr-
fr

c1-c1 c1-c2 c1-c1-
c2-c2

c1-c1-
c2-c2

c2 c2 fa-fa-fe-
fe

fa-fa-fe-
fe

fl-fl-sw-
sw-c2-

c2-fe-fe

fl-fl-sw-
sw-c2-
c2-fe-

fe-bl-bl-
fr-fr-c1-
c1-st-st

fl-sw-
c2-c2

fl-sw-
c2-c2

st-st-st-
st

st-st-st-
st

Overall

Total Execution Time

FCFS Close Proposed

 11.2% Performance improvement
from FCFS consists of

 Close Page Policy: 4.2%

 Baseline Optimization: 4.9%

 Proposal Optimization: 1.9%

 Baseline optimization accomplishes
a 9.1% improvement

Optimization Breakdown

0%

2%

4%

6%

8%

10%

Performance
improvement

Proposed
Optimization

Baseline
Optimization

Close Page

FCFS(base)

4.2%

4.9%

1.9%

・Timeout Detection
・Write Queue Spill Prevention
・Auto-Precharge
・Max Activate-Number Restriction

Proposals
Compute-phase prediction
Writeback-refresh overlap

Optimizations
MLP-aware priority control
Memory bus reservation
Activate throttling

Optimization Breakdown

 11.2% Performance improvement
from FCFS consists of

 Close Page Policy: 4.2%

 Baseline Optimization: 4.9%

 Proposal Optimization: 1.9%

 Baseline optimization accomplishes
a 9.1% improvement

0%

2%

4%

6%

8%

10%

Performance
improvement

4.2%

4.9%

1.9%

Proposed
Optimization

Baseline
Optimization

Close Page

FCFS(base)

Summary of memory access scheduling

 High Performance Memory Access Scheduling
 Proposals

 Novel thread-priority control method: Compute-phase prediction

 Cost-effective refreshing method: Writeback-refresh overlap

 Optimization strategies
 MLP-aware priority control, Memory bus reservation, Activate

Throttling, Aggressive precharge, force refresh, timeout handling

 The optimized scheduler reduces exec time by 11.2%
 Several trade-offs between performance and EDP

 Aggregating the various optimization strategies is
most important for the DRAM system efficiency

Access Map Pattern Matching Prefetch:
Optimization Friendly Method

Yasuo Ishii1, Mary Inaba2, and Kei Hiraki2

Background

⚫Speed gap between processor and memory
has been increased

⚫ To hide long memory latency, many
techniques have been proposed.

Importance of HW data prefetch has been
increased

⚫Many HW prefetchers have been proposed

Conventional Methods

⚫ Prefetchers uses

1. Instruction Address

2. Memory Access Order

3. Memory Address

⚫Optimizations scrambles information

 Out-of-Order memory access

 Loop unrolling

Limitation of Stride Prefetch[Chen+95]
Out-of-Order Memory Access

Memory Address Space

・・・

・・・

0xAB04

0xAB03

0xAB05

0xAB06

0xABFF

0xAB04 2 steady

Cache
Line

・・・

0xAB02

A Access 4

Access 3

Access 1

0xAB01

0xAB00

0xAAFF

Access 2

for (int i=0; i<N; i++) {
load A[2*i]; ・・・・・ (A)

}

Tag Address Stride State

Out of
Order

Cannot detect strides

Weakness of Conventional Methods

⚫Out-of-Order Memory Access

 Scrambles memory access order

 Prefetcher cannot detect address correlations

⚫ Loop-Unrolling

 Requires additional table entry

 Each entry trained slowly

Optimization friendly prefetcher is required

Access Map Pattern Matching

⚫ Pattern Matching

Order Free Prefetching

Optimization Friendly Prefetch

⚫Access Map

Map-base history

2-bit state map

◆Each state is attached to cache block

State Diagram for Each Cache Block

⚫ Init

Initialized state

⚫Access

Already accessed

⚫ Prefetch

Issued Pref. Requests

⚫Success

Accessed Pref. Data

Init Access

Access

Success

Access

Pre-
fetch

Prefetch

Memory Access Pattern Map

⚫Corresponding to
memory address space

Cache line granularity

I I

Memory Address Space

・・・

Cache Line

Zone Size

・・・

・・・

・
・
・

A

Memory Access Pattern Map

Pattern Match Logic

S PA

Pattern Matching Logic

⚫Access Map
Shifter

⚫ Pattern
Detector

⚫ Pipeline
Register

⚫ Prefetch
Selector

Addr

Memory Access Pattern Map

I AA AI AII I A

Access Map Shifter

10 1

I AA AI AA AII I

A

・・・

Addr

・・・1

Priority Encoder & Adder

Prefetch Request

Feedback Path
0

+
1

+
2

+
3

・・・

(Addr+2)

Access Map Shifter

・・・

00・・・

Priority Encoder & Adder

II AI I AA AI A A

Parallel Pattern Matching

⚫Detects patterns from memory access map

Detects address correlations in parallel

Searches candidates effectively

I SI AI AI AA II I I AA

Memory Access Pattern Map

・・・ ・・・

AMPM Prefetch

⚫ Memory address
space divides into
zone

⚫ Detects hot zone

⚫ Memory Access
Map Table

LRU replacement

⚫ Pattern Matching

Zone

Zone

Zone

Zone

Zone

Memory Address Space

Hot
Zone

Hot
Zone

Hot
Zone

Access
Zone

Prefetch Request

Memory Access Map Table

・・・
P S A I・・・P S IA ・・・

Pattern Match
Logic

Features of AMPM Prefetcher

⚫ Pattern Matching Base Prefetching

Map base history

Optimization friendly prefetching

⚫ Parallel pattern matching

Searches candidates effectively

Complexity-effective implementation

Methodology

⚫Simulation Environment

DPC Framework

Skips first 4000M instructions and evaluate
following 100M instructions

⚫Benchmark

SPEC CPU2006 benchmark suite

Compile Option: “-O3 -fomit-frame-pointer
-funroll-all-loops”

IPC Measurement

⚫ Improves performance by 53%

⚫ Improves performance in all benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4
0

0
.p

er
lb

en
ch

4
0
1

.b
zi

p
2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1
6

.g
am

es
s

4
2

9
.m

cf

4
3

3
.m

il
c

4
3
4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3
6

.c
ac

tu
sA

D
M

4
3
7

.l
es

li
e3

d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
4

7
.d

ea
lI

I

4
5

0
.s

o
p

le
x

4
5
3
.p

o
v
ra

y

4
5

4
.c

al
cu

li
x

4
5
6

.h
m

m
er

4
5
8
.s

je
n
g

4
5

9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7
0

.l
b
m

4
7

1
.o

m
n

et
p

p

4
7
3

.a
st

ar

4
8
1
.w

rf

4
8

2
.s

p
h

in
x

3

4
8
3

.x
al

an
cb

m
k

A
ri

th
 M

ea
n

In
st

ru
ct

io
n
s

P
er

 C
y
cl

e

NOPREF PREFETCH

L2 Cache Miss Count

⚫Reduces L2 Cache Miss by 76%

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1

6
.g

am
es

s

4
2

9
.m

cf

4
3

3
.m

il
c

4
3
4
.z

eu
sm

p

4
3
5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.l

es
li

e3
d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
4
7
.d

ea
lI

I

4
5

0
.s

o
p

le
x

4
5
3
.p

o
v
ra

y

4
5

4
.c

al
cu

li
x

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
5

9
.G

em
sF

D
T

D

4
6
2
.l

ib
q
u
an

tu
m

4
6
4
.h

2
6
4
re

f

4
6
5
.t

o
n
to

4
7

0
.l

b
m

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8
1
.w

rf

4
8

2
.s

p
h

in
x

3

4
8

3
.x

al
an

cb
m

k

A
ri

th
 M

ea
nL

2
 M

is
s

C
o
u
n
t

P
er

 1
0
0
M

 I
n
st

ru
ct

io
n
s

L2 Miss Count / 100M Inst. (without Prefetch)

L2 Miss Count / 100M Inst. (with Prefetch)

Summary of prefetching

⚫Access Map Pattern Matching Prefetch

Order-Free Prefetch

◆ Optimization friendly prefetching

Parallel Pattern Matching

◆ Complexity-effective implementation

⚫Optimized AMPM realizes good performance

Improves IPC by 53%

Reduces L2 cache miss by 76%

Spatial

Q & A

Stride Prefetch

Fu+ 1992

Markov Prefetch

Joseph+ 1997

GHB

Nesbit+ 2004

Feedback based

Honjo 2009

Hybrid

Hsu+ 1998

Software Support

Mowry+ 1992

AC/DC

Nesbit+ 2004

Adaptive Stream

Hur+ 2006

FDP

Srinath+ 2007

Software

Sequence-Base

(Order Sensitive)

Tag Correlation

Hu+ 2003

Buffer Block

Gindele1977

SMS

Somogyi 2006

Sequential

Smith+ 1978

RPT

Chen+ 1995

Locality Detect

Johnson+, 1998

Spatial Pat.

Chen+ 2004

Adaptive

Hybrid

Adaptive Seq.

Dahlgren+ 1993

Commercial

Processors

SuperSPARC

R10000

PA7200

Power4

Pentium 4

AMPM Prefetch

Ishii+ 2009

HW/SW Integrate

Gornish+ 1994

平木 敬

Summary

1. Speculation is the most important tool to

speed-up a single core processor

2. Our target in the next 10 years is more than 20

instructions / cycle

3. Next target would be

Prediction of NoC data injection

Prefetching for gather/scatter operation

Practical value prediction

東京大学
80

平木 敬

Questions

東京大学
81

