From Separation Logic to Systems Softwar

Peter OOHearn, Queen Mary

Based on work of theéspacelnvadaxam: Cristiano
Calcagno, Dino Distefano, Hongseok Yang, and me

Special thanks to our SLAyer colleagues (MSR):
Josh Berdine, Byron Cook

Talk at Seoul National Univ, 11 May 2009

Part O,

Context

"'hings like even software veribcation, this has bee
the Holy Grall of computer science for many
decadedut now in some very key areas, for
example, driver veribcation weOre building

tools that can do actual proofs about the software

and how it works in order to guarantee reliability.

Bill Gates, WINHEC conference, 2002

Some Context

. Since 2000, striking progress in automatic program proving. E.g.:
' SLAM: Protocol properties of procedure calls in device drivers,
any call toReleaseSpinLock is preceded by a call to
AquireSpinLock
ASTREE: no run-time errors in Airbus code

Some Context

Since 2000, striking progress in automatic program proving. E.g.:
' SLAM: Protocol properties of procedure calls in device drivers,
any call toReleaseSpinLock is preceded by a call to

AquireSpinLock
' ASTREE: no run-time errors in Airbus code

The Missing Link

' ASTREE assumes: no dynamic pointer allocation

' SLAM assumes:. memory safety
' Wither automatic heap veribcation? (for substantial programs)

Some Context

Since 2000, striking progress in automatic program proving. E.g.:

' SLAM: Protocol properties of procedure calls in device drivers,
any call toReleaseSpinLock is preceded by a call to
AquireSpinLock

' ASTREE: no run-time errors in Airbus code

The Missing Link

' ASTREE assumes: no dynamic pointer allocation
' SLAM assumes:. memory safety
' Wither automatic heap veribcation? (for substantial programs)

Many important programs make serious use of heap: Linux, Apache
TCP/IP, 10S... but heap veribcation is hard.

Part |,
BasiCcs

Separation Logic

X|->y * y|-> X

Separation Logic

X|->y * y|-> X

%

Separation Logic

X|->y

Separation Logic

y|-> X

/

Separation Logic

X|->y * y|-> X

%

Separation Logic

X|->y * y|-> X

Separation Logic

X|->y * y|-> X

%

Separation Logic

X|->y

Separation Logic

y|-> X

/

Separation Logic

X|->y * y|-> X

%

A Substructural Logic

A " AHA

10993 " 1035%3 # 10 $%3

A#B 1" A

10993 #42%%b " 10393

An inconsistency: trying to be two places at once

10]->3 * 10|->3

Heaplets (heap portions) as possible worlds (i.e., a kin
modal logic)

' Add to Classical Logic:
emp : Othe heaplet is emptyO
x I" y : Othe heaplet hasxactly one cellx, holdingyO
A#B : Othe heaplet can be divided gois true of one partition and3

of the otherO.

Heaplets (heap portions) as possible worlds (i.e., a kin
modal logic)

' Add to Classical Logic:
" emp : Othe heaplet is emptyO
- x 1" y : Othe heaplet hasxactly one cellx, holdingyO

" A#B : Othe heaplet can be divided #ois true of one partition and3
of the otherO.

' Add inductive debnitions, and other more exotic things@@magic
wandO, Oseptractionpas well.

Heaplets (heap portions) as possible worlds (i.e., a kin
modal logic)

Add to Classical Logic:
" emp : Othe heaplet is emptyO
- x 1" y : Othe heaplet hasxactly one cellx, holdingyO

" A#B : Othe heaplet can be divided #ois true of one partition and3
of the otherO.

Add inductive debnitions, and other more exotic things@magic
wandO, Oseptractionpas well.

Standard model: RAM model
heap: N! § Z

and lots of variations (records, permissions, ownership... more late

Algebraic Structure
- Wecanlift! :H" H! H to# P(H)" P(H)$ P(H)
h%A#B I &hA,hB.h: hAI hB and

Na %A andhg %B

emp = {e}.

' Ol have a heap, and it is emptyO (not the empty set of heaps)
' (P(H),# emp is atotal commutative monoid

P(H) Is (in the subset ordefoth

' A Boolean Algebra, and
' A Residuated Monoid

A#B' C (A" By C

cf. Boolean Bl logic (OOHearn, Pym)

In-place Reasoning

(x " D)#P] [X]:=7 [(x!" 7)#P]

[P#(x!" D)]dispose (x) [P]

[P] x = cons(a,b) [P#(x ! a, b)] (x $%ree(P))

In-place reasoning and Inductive DePnitions

Example Inductive Debnition:

tree (E) " If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (X) &tree (y)

Example Proof:
{tree (p)' p € nil }

1=p%l; j:=p%r,;
dispose (p);

{ tree (i) &tree (j)}

In-place reasoning and Inductive DePnitions

Example Inductive Debnition:
tree (E) " If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (X) &tree (y)

Example Proof:
{tree (p)' p€ nil }
{(p$%: x',r:y") &tree (x') &tree (y')}
1I=p%l; J:=p%r,;
dispose (p);

{ tree (i) &tree (j)}

In-place reasoning and Inductive DePnitions

Example Inductive Debnition:

tree (E) " If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (X) &tree (y)

Example Proof:
{tree (p)' p€ nil }
{(p$%: x',r:y") &tree (x') &tree (y')}
1I=p%l; J:=p%r,;
{(p$%: i,r:j) &tree (i) &tree (j)}
dispose (p);

{ tree (i) &tree (j)}

In-place reasoning and Inductive DePnitions

Example Inductive Debnition:

tree (E) " If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (X) &tree (y)

Example Proof:

{tree (p)' p€ nil }

{(p$%: x',r:y") &tree (x') &tree (y')}
1I=p%l; J:=p%r,;

{(p$%: i,r:j) &tree (i) &tree (j)}
dispose (p);

{emp&tree (i) &tree (])}

{ tree (i) &tree (])}

Extended In-place Reasoning

. Spec
{tree (p)} DispTree(p) {emp

' Rest of proof of evident recursive procedure

{tree (1)!tree ()}
DispTree (i);

{empl tree (])}
DispTree ());

{P}C{Q}
{PIR}C{Q!R}

Frame Rule

Extended In-place Reasoning

. Spec
{tree (p)} DispTree(p) {emp

' Rest of proof of evident recursive procedure

{tree (1)!tree ()}
DispTree (i);

{empl tree (])}
DispTree ());

{P}C{Q}
{PIR}C{Q!R}

Frame Rule

Extended In-place Reasoning

. Spec
{tree (p)} DispTree(p) {emp

' Rest of proof of evident recursive procedure

{tree (1)!tree ()}
DispTree (i);
{emp tree (])}
DispTree ());
{emp emp

{P}C{Q}
{PIR}C{Q!R}

Frame Rule

Extended In-place Reasoning

. Spec
{tree (p)} DispTree(p) {emp

' Rest of proof of evident recursive procedure

{tree (1)!tree ()}
DispTree (i);

{empl tree (])}
DispTree ());

{emp

{P}C{Q}
{PIR}C{Q!R}

Frame Rule

Part I,

Cooking a Static Analyze

Linked Lists
List segments [(st(E) Iis shorthand forlsegE, nil))

IsegE,F) If E=F then emp
else #y.E$U :y &lIsegly, F)

Iseg, t) &t$U%il :y] &list(y)

Cooking a Program Analyzer

1. Just write an interpreter. (Well, arabstract interpreter.)

2. Symbolically execute statements using in-place reasoning (all true
Hoare triples).

3. Interpret while loops by using abstractin rules like
Is(x,t") ! list(t") " list(x)

to automatically bnd loop invariants. This uses the rule of
consequence on the right to Pnd the invariant for the while rule

{P}C{Q} Q" Q {I'#B}C{l}
{P}C{Q'} {1}while B do{! # AB}

4. A terminating run of the interpreter will give us proof of assertions
at all program points.

{emp

x=nil :

while (){
newy);
y ->tl = X;
X=Y;

}

Calculated Loop Invariant

Example

Example

{emp
x=nil ;
while C){ x=nil I emp

newy);

y ->tl = X;
X=Y;
}

Calculated Loop Invariant

X=nil ! emp

{emp
x=nil ;
while (){ x 1" nil

newy);

y ->tl = X;
X=Y;
}

Calculated Loop Invariant
X=nil #emp
$ x!I" nil
$

Example

Example

{emp
x=nil ;
while C){ x!I" x'#x'I" nil

newy);

y ->tl = X;
X=Y;
}

Calculated Loop Invariant
X =nil $emp
% x!" nil
%

Example

{emp

x=nil ;

while (C){ Is(x, nil)
new(y);

y ->tl = X;
X=Y;
}

Calculated Loop Invariant
X=nil ! emp
X #3 nil
IS(X, nil)

Example

{emp
x=nil ;
while (C){ X " x #Is(x*, nil)

newy);

y ->tl = X;
X=Y;
}

Calculated Loop Invariant
X =nil $emp
% x!" nil
% Is(x,nil)

Example

{emp

x=nil ;

while (C){ IS(x, nil)
newy);

y ->tl = X;
X=Y;
}

Calculated Loop Invariant
X=nil ! emp
X #3 nil
IS(X, nil)

Example

{emp

x=nil ;

while (C){ Is(x, nil)
newy);

y ->tl = X;
X=Y;
}

Calculated Loop Invariant
X=nil ! emp
X #3 nil
IS(X, nil)

Fixed-point reached!

Part IlI:
A new recipe from East

London

Footprints and Small Specs

. Semantics: Prograni’, with
 P,h! h or P,h! memfault

' Footprint (Input Footprint)

h" Foot(P) # P,h $!' memfault (Safety)
% &' h.P,h! memfault (Minimality)

- Small Spec oP: [Foot(P)] P [Post(P)]

We achieve compositionality,

by aiming for ““small specsOO

that describe the footprint

We achieve compositionality,

by aiming for ““small specsOO

that describe the footprint

An Example Small Spec

{tree (p)} DispTree(p) {emp

If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (xX) &tree (y)

The OsmallnessO of the tree assertion

tree (E) " If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (X) &tree (y)
. tree (E) is true of

The OsmallnessO of the tree assertion

tree (E) " If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (X) &tree (y)
- tree (E) is falseof

The OsmallnessO of the tree assertion

tree (E) " If E=nil thenemp
else#x,y.(E$%: x,r:y) &tree (X) &tree (y)
' and evenfalse of

3 o
®

The Al Frame Problem
(McCarthy-Hayes, 1969)

¥ When you specify an action {P}act{Q}, an inordinate
amount of effort is needed to say what OactO DOSH
do.

¥ { not(holding(block)) } pick-up(block) { holding(blocl
¥ { holding(block?2) } pick-up(block) { holding(block2) }

Some Philosophical Problems from the Standpoint of Artifical Intelligence,
McCarthy-Hayes, Machine Intelligence, 1969

The Al Frame Problem
(McCarthy-Hayes, 1969)

¥ When you specify an action {P}act{Q}, an inordinate
amount of effort is needed to say what OactO DOSH
do.

¥ { not(holding(block)) } pick-up(block) { holding(blocl
¥ { holding(block?2) } pick-up(block) { holding(block2) }

Some Philosophical Problems from the Standpoint of Artific
McCarthy-Hayes, Machine Intelligence, 1969

A Small Spec, and a Small Proof

. Spec
[tree (p)] DispTree(p) [emp

' Proof of body of recursive procedure

[tree (1)!tree (])]
DispTree (i);
[emp! tree (j)]
DispTree());
[emp

{P}C{Q}
{PIR}C{Q!'R}

Frame Rule

A Small Spec, and a Small Proof

. Spec
[tree (p)] DispTree(p) [emp

' Proof of body of recursive procedure

[tree (1)!tree (])]
DispTree (i);
[emp! tree (j)]
DispTree());
[emp

{P}C{Q}
{PIR}C{Q!'R}

Frame Rule

Extensions of the entallment question I: Frame Infere

Extensions of the entallment question I: Frame Infere

Extensions of the entallment question I: Frame Infere

tree (1) tree (J)) " tree (i)! ?

Extensions of the entallment question I: Frame Infere

tree (1) ! tree (j) " tree (1) ! tree (])

Extensions of the entallment question I: Frame Infere

X £ nil " list(x) # $xx & x{ ?

Extensions of the entallment question I: Frame Infere

x £ nil " list(x) # $x7x & xq list(x”

Extensions of the entallment question I: Frame Infere

A Small Spec, and a Small Proof

. Spec
[tree (p)] DispTree(p) [emp

' Proof of body of recursive procedure

[tree (1)!tree (])]
DispTree (i);
[empl tree (j)]
DispTree ());
[emp

{P}C{Q}
{PIR}C{Q!R}

Frame Rule

Wait a minute, where are you
gonna get preconditions? How
to get started?

Wait a minute, where are you
gonna get preconditions? How
to get started?

Oh, donOt tell me, that sounds...

out of this world...

Abductive Inference
(Charles Peirce, circa 1900, writing
about the scientibc process)

OAbduction is the process of forming an explanatory hypothesis.
It is the only logical operation which introduces any new ideaO

OA man must be downright crazy to deny that science has made many
true discoveries. But every single item of scientific theory which
stands established today has been due to Abduction.O

The Collected Papers of Charles Sanders Peirce, Volume V,
Pragmatism and Pragmaticism

Extensions of the entallment question Il: abduction

1Calcagno, Distefano, O'Hearn, Yang, POPL'09

Extensions of the entallment question Il: abduction

x!" nil #? $ list(x) #list(y)

" We call the? here an Oanti-frameb.

lCalcagno, Distefano, OOHearn, Yang, POPLO09

Extensions of the entallment question Il: abduction

x!I" nil #list(y) $ list(x) #list(y)

" We call the? here an Oanti-frameb.

lCalcagno, Distefano, OOHearn, Yang, POPLO09

Extensions of the entallment question Il: abduction

x!" y#?2 $ x!" a#list(a)

" We call the? here an Oanti-frameb.

lCalcagno, Distefano, OOHearn, Yang, POPLO09

Extensions of the entallment question Il: abduction

! "
x!" y# y=a$list(a) % x!" a#list(a)

" We call the? here an Oanti-frameb.

lCalcagno, Distefano, OOHearn, Yang, POPLO09

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *Xx;
x=malloc(sizeof(list-item));
X tail = 0O;
foo(X,y);
return(x); }

Abductive Inference:

Given Summary/spec: [list(x) " list(y)]foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *Xx;
x=malloc(sizeof(list-item));
X tail = O;
foo(X,y);
return(x); }

Abductive Inference:

Given Summary/spec: [list(x) " list(y)]foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *Xx;
x=malloc(sizeof(list-item));
X tail = O;
foo(X,y);
return(x); }

Abductive Inference:

Given Summary/spec: [list(x) #list(y)]foo(x, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *Xx;
x=malloc(sizeof(list-item));
X tail = O;
foo(X,y);
return(x); }

Abductive Inference: x "l O#? $ list(x) #list(y)

Given Summary/spec: [list(x) #list(y)]foo(Xx, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *Xx;
x=malloc(sizeof(list-item));
X tail = O;
foo(X,y);
return(x); }

Abductive Inference: x "I 0# list(y) $ list(x) #list(y)

Given Summary/spec: [list(x) #list(y)]foo(Xx, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) {
list-item *X;
x=malloc(sizeof(list-item));
X tail = 0O;
foo(X,y);
return(x); }

Abductive Inference: x "I 0# list(y) $ list(x) #list(y)

Given Summary/spec: [list(x) #list(y)]foo(Xx, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y)
list-item *X;
x=malloc(sizeof(list-item));
X tail = 0O; X"l 0
foo(x,y); list(x)
return(x); }

Abductive Inference: x "I 0# list(y) $ list(x) #list(y)

Given Summary/spec: [list(x) #list(y)]foo(Xx, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y)
list-item *X;
x=malloc(sizeof(list-item));
X tail = 0O; X"l 0
foo(x,y); list(x)
return(x); } list(ret)

Abductive Inference: x "I 0# list(y) $ list(x) #list(y)

Given Summary/spec: [list(x) #list(y)]foo(Xx, y)[list(x)]

Abduction Example: Inferring a pre/post pair

1 void p(list-item *y) { emp list(y)(Inferred Pre)
list-item *X;
x=malloc(sizeof(list-item));
X! tall = 0; x"l 0
foo(x,y); list(x)

return(x); } list(ret)(Inferred Post)

Abductive Inference: x "I 0# list(y) $ list(x) #list(y)

Given Summary/spec: [list(x) #list(y)]foo(x, y)[list(x)]

Bi-Abduction

A | ?anti-frame" B | ?frame

Generally, we have to solve both inference guestions at each proce
call site (and each heap dereference)

It lets us do a bottom-up analysis: callees before callers. Generate:
pre/post specs without being given preconditions or postconditions.

Experimental Results

STRESS:specs should b
together

small example to test
how accurate the specs
are

7

STRESS:specs should b
together

small example to test

Experimental Results EFaaas

7

® Small examples

x Recursive procedures for traversing/deleting/inserting
In acyclic/cyclic nested lists

n - Medium:examples

= Firewire device drivel(10K LOC) found specs for 121
procedures out of 121

Abductor on larger programs

Program

Num.
Procs

Time (sec)

Linux 2.6.25.4

101330

6869.09

Gimp 2.4.6

15114

3601.16

OpenSSL 0.9.8¢

4818

605.36

Sendmail 8.14.3

684

184.50

Apache 2.2.8

1870

294.67

OpenSSH 5.0

1135

142.56

Spin 5.1.6

357

[72.82

Confessions/Admissions

Sound wrt OldealizedO model (e.g., no concurrency...

DonOt know good general criterion for OqualityO of
specs (anecdotal evidence, eyeball some examples)

Lots of heuristics (in abduction, and in abstraction, ant
In join, and In predicate discovery...)

Timeout IS Involved

Hard things in extra 40% procs in Linux

Al ?anti-frame" B ! ?frame

Bi-abduction pPts conceptually very naturally with the ideassohall
specsthat talk about footprints

It leads to anextreme modularshape analysis

Maybe it can be used for other things too...

