김선 교수 연구실 소속 팀 (Team 털실뭉치의 이단영) 이 삼성전자 SAIT에서 주최한 "삼성 인공지능/컴퓨터공학 챌린지 2023"의 인공지능 분야의 “반도체 소재 시뮬레이션용 머신 러닝 알고리즘” 부문에서 2위(우수상)로 수상하였다. 해당 부문의 주제는 반도체 소재 시스템의 3차원 구조로부터 시스템의 에너지 및 force field를 예측하는 알고리즘 개발이었으며, 이는 분자 동역학 (Molecular dynamics) 을 통한 에너지 최적화 및 시뮬레이션의 정확성을 향상시키는 데 중요한 역할을 한다.
김선 교수 팀은 3차원 구조의 모델링에 적합한 equivariant 신경망 기반 모델의 개발을 통해 반도체 소재의 복잡한 구조와 상호 작용을 더 정확하고 효율적으로 모델링하고자 하였다. 연구팀은 다양한 기계학습 기법과 결합된 새로운 접근 방식을 사용하여, 전통적인 방법보다 빠르고 정확한 예측이 가능하게 하였다. 이를 통해, 반도체 소재의 효율적인 설계 및 개발 과정에서의 시간 및 비용 절감에 크게 기여할 것으로 기대된다.