김선 교수 연구진은 DNA의 3차원적 접힘에 의한 상호작용을 포함하는 생물학적 요인들을 포괄적으로 이용하여 유전자의 발현 조절을 모델링하는 트랜스포머(transformer) 기반의 인공지능 모델인 크로모포머(Chromoformer)를 제시하였다. 그 결과로서, 유전자 발현 예측의 성능이 기존 모델에 비해 향상되어 보다 효과적인 모델링이 가능함을 보였다. 뿐만 아니라 학습된 인공지능 모델의 해석을 통하여 간암 세포주 특이적인 유전자 발현과 연관된 인핸서(enhancer) 활성화를 포착할 수 있고, 나아가 전사 공장(transcription factory) 및 폴리콤 그룹 소체(Polycomb group body)와 관련된 조절 인자의 동역학을 포착할 수 있음을 확인할 수 있었다.
인공지능과 생명과학 분야 융합의 산물인 본 연구는 인공지능 기술이 생명과학 분야의 새로운 가설을 발굴하는 하나의 도구로서 활용될 수 있다는 새로운 연구 패러다임의 실질적인 예를 제시하였고, 구축된 모델은 암 등의 세포 상태에 특이적으로 나타나는 염색질 상호작용을 포착하는 방법론으로서 활용이 가능할 것으로 보인다.
“Learning the histone codes with large genomic windows and three-dimensional chromatin interactions using transformer", Dohoon Lee, Jeewon Yang and Sun Kim. Nature Communications, 13(1), 1-19.