1. Community
  2. arrow_forward_ios

News

Tags
Search
research
포스트 대표 이미지

컴퓨터분야 쉬운전문용어를 보급한다. 제정위원회 위원장 이광근 교수

"울타리없는 세계경쟁에서 우리 학술이 일류로 앞서가는 장기전 비밀병기요?쉬운 전문용어입니다."이광근 교수가 위원장으로 있는 한국정보과학회 쉬운전문용어 제정위원회가 2024년 1월부터 조직되어 활동하고 있다. 한국정보과학회 산하 각 분야 연구회 소속 12명의 교수들과 국어학 및 국립국어원 전문가가 참여하고 있다. "억지 순우리말? 아닙니다. 소리뿐인 한문투? 아닙니다. 쉬운말 입니다.""외부로 글로벌하게 영어로 소통하기는 당연하고요. 내부로는 우리의 인력과 지력의 저변을 두텁게 하는데 모국어 쉬운말로 소통하기는 당연합니다. 요즘 k-컬쳐의 힘이 어디에서 오는지를 보면 당연합니다.""쉬운전문용어로 저변 인구를 넓히고 지력을 축적한 문화권이 늘 혁신을 이끌고 선두로 나섭니다. 학술이나 문화의 역사가 늘 그런식이었죠." 위원회 결과물들은 포털 https://easyword.kr에 모이고 있다. 지금까지 제안/발굴된 1100여개 쉬운 전문용어들이 모여있다. 이 포탈에는 누구나 쉬운전문용어를 찾고 참여하고 제안할 수 있다. https://easyword.kr/why에는 이런 노력의 배경, 쉬운전문용어 만들때 원칙, 쓰이는 용도가 안내되어 있다. 위원회 취지를 여기 인용하면 다음과 같다:전문지식이 전문 학자들에만 머문다면 그 분야는 그렇게 쇠퇴할 수 있다. 저변이 좁아지고 깊은 공부를 달성하는 인구는 그만큼 쪼그라들 수 있다. 전문지식이 보다 많은 사람들에게 널리 퍼진다면, 그래서 더 발전할 힘이 많이 모이는 활기찬 선순환이 만들어진다면. 그러면 그 분야를 밀어올리는 힘은 나날이 커질 수 있다. 더 많은 사람들이 더 나은 성과를 위한 문제제기와 답안제안에 참여할 수 있고, 전문가의 성과는 더 널리 이해되고 더 점검받을 수 있게된다. 그러므로 쉬운 전문용어가 어떨까. 전문개념의 핵심을 쉽게 전달해주는 전문용어. 학술은 학술의 언어를 --우리로서는 소리로만 읽을 원어나 한문을-- 사용해야만 정확하고 정밀하고 경제적일까? 아무리 정교한 전문지식이라도 쉬운 일상어로 짧고 정밀하게 전달될 수 있다. 시에서 평범한 언어로 밀도 있게 전달되는 정밀한 느낌을 겪으며 짐작되는 바이다. 쉬운 전문용어가 활발히 만들어지고 테스트되는 생태계. 이것이 울타리없는 세계경쟁에서 우리를 깊고 높게 키워줄 비옥한 토양이다. 시끌벅적 쉬운말로 하는 학술의 재미는 말할것도 없다....
포스트 대표 이미지

박재식 교수 연구진, 빠르고 정확한 드래그 기반 이미지 에디팅 기술 개발로 세계 선도

1초 내외로 실행되는 feedforward 방식의 초고속 드래그 기반 이미지 편집 파이프라인 개발최신 드래그 기반 이미지 편집 기술 대비 메모리 사용량 5배 절감 및 처리 속도 75배 향상실생활 비디오 데이터로 학습된 두 종류의 생성모델 (GAN/Diffusion)의 조합을 통해, 자연스럽고 사실적인 이미지 편집 구현​박재식 교수 연구진이 실시간 수준의 드래그 기반 이미지 편집을 가능하게 하는 InstantDrag 기술을 개발하였다. 드래그 기반 이미지 에디팅 (drag-based image editing)은 사용자가 이미지의 특정 부분을 드래그하면, 생길 수 있는 움직임을 고려하여 자연스럽게 이미지를 편집하는 기술이다. 기존의 드래그 기반 이미지 편집 기술들은 이미지 인버전 (inversion)과 이미지 별 최적화 (per-image optimization) 방식에 의존하여 편집 시간이 길고 많은 계산 자원을 필요로 했다. 또한 움직일 수 있는 영역을 지정하는 마스크 (movable region mask)와 텍스트 프롬프트와 같은 추가 입력이 필요해 편의성이 떨어졌다. 연구진은 이러한 문제를 해결하기 위해 최적화 과정이 필요 없는 feedforward 방식의 편집 파이프라인을 제안하였다. 이미지 편집 과정을 움직임 생성 (motion generation)과 움직임 기반 이미지 생성 (motion-conditioned image generation) 두 단계로 분리하는 새로운 접근법을 도입했으며, 사용자 편의성 (interactivity)을 극대화하기 위해 원본 이미지와 드래그 명령어만으로 동작하는 알고리즘을 개발했다. InstantDrag의 핵심 구성 요소는 다음과 같은 두 개의 네트워크이다:FlowGen: 적대적 생성 신경망 (GAN) 기반으로, 사용자의 드래그 입력을 정교한 움직임 정보(dense optical flow)로 변환FlowDiffusion: 확산 모델 (Diffusion) 기반으로, 입력 이미지와 생성된 움직임 정보를 바탕으로 고품질 이미지 편집 수행실제 비디오 데이터로 학습된 위 두 네트워크의 결합으로, InstantDrag 파이프라인은 추가적인 마스크나 텍스트 프롬프트 입력 없이도 1초 이내에 자연스러운 이미지 편집이 가능하다. 얼굴 영상 데이터셋과 일반적인 장면들에서의 실험을 통해, 우수한 편집 품질을 유지하면서도 기존 기술 대비 메모리 사용량은 5배 감소하고 처리 속도는 75배 향상됨을 입증했다. 본 연구는 컴퓨터 그래픽스 분야 최우수 학술대회 중 하나인 SIGGRAPH Asia 2024에 발표될 예정이다.​"InstantDrag: Improving Interactivity in Drag-based Image Editing", Joonghyuk Shin, Daehyeon Choi, Jaesik Park, SIGGRAPH Asia Conference Papers 2024....
포스트 대표 이미지

강유 교수 연구진, 다양화된 개인화 순차 추천 기술 개발

​강유 교수 연구진이 다양성을 고려한 개인화 순차 추천 기술을 개발하였다. 추천 다양성이란 플랫폼에 존재하는 상품들을 소외되는 항목 없이 골고루 사용자들에게 추천하는 것을 의미한다. 추천에서 다양성을 높이는 것은 온라인 상업 플랫폼의 수익을 극대화하기 위한 핵심 요소로 최근 다양화 추천과 관련된 연구에 대한 관심도가 높아지고 있다.본 연구에서는 사용자간 순서를 고려한 다양화 추천 기술인 SAPID를 제안하였다. 기존 다양화 추천에 대한 연구는 모든 사용자에 대한 정보를 사전에 알고 있을 때 각 사용자들이 어떤 상품을 얼마나 좋아하는지를 취합하여 선호도가 비슷한 상품 중 다른 사용자들이 좋아하지 않는 아이템을 추천하는 방식으로 다양성을 높이는 방향으로 접근해왔다. 그러나 현실 시나리오에서는 미래의 사용자가 어떤 상품을 선호할지 사전에 알 수 없는 문제가 있다. SAPID는 이를 극복하기 위해 이전 데이터를 바탕으로 미래의 상품별 수요를 예측하여 현재 어떤 상품을 추천해야 다양성이 높아질지 판단한다. 본 연구는 정헌재단의 학술 연구 지원을 받았으며, 연구 결과는 2025년 3월 데이터 마이닝 및 머신 러닝 학회인 WSDM2025에서 발표될 예정이다....
포스트 대표 이미지

주한별 교수 연구실, 과학기술정보통신부에서 2024년도 SW스타랩으로 선정

과학기술정보통신부에서 지원하는 2024년도 SW스타랩에 주한별 교수 연구실이 선정됨SW스타랩은 소프트웨어(SW) 분야 우수 기초·원천기술을 보유한 대학 연구실을 지원하는 사업임주한별 교수 연구실이 과학기술정보통신부에서 지원하는 2024년도 SW스타랩으로 선정되었다. SW스타랩은 과학기술정보통신부에서 소프트웨어(SW) 분야 우수 기초·원천기술을 보유한 대학 연구실을 지원하는 사업이다. SW스타랩​으로 선정된 연구실은 연구 성과에 따라 최장 8년 동안 안정적으로 연구할 수 있도록 지원을 받는다. 올해 공모에는 20개 대학 총 48개의 연구실이 신청(경쟁률 4.8:1)했으며, 고려대, 서울대, 포항공대, 한국과학기술원(KAIST), 울산과학기술원(UNIST) 등 5개 대학 총 10개의 연구실이 최종 선정됐다. 인공지능(AI) 분야에 선정된 주한별 교수 연구실에서는 ‘인간의 3차원 외형, 모션, 사회적 행동을 모방하는 생성형 디지털 휴먼 AI 모델 개발’이라는 주제로 연구를 진행한다.SW스타랩은 2015년부터 지난해까지 석사 474명, 박사 218명 등 총 778명의 고급인력을 배출했다. 지난해까지 최근 3년간 SCIE급 저널에 연간 60여편의 논문을 게재하고, (최)우수학술대회에서 연간 90여편의 논문을 발표하는 등 연구 성과를 창출했다. 특히 국제학술대회 최우수논문상 수상과 국가 연구개발 100선 다수 선정 등을 이뤘고, 깃허브 등을 통해 연평균 60여 건의 공개SW를 전 세계에 공유함으로써 국내 SW 연구 위상을 높였다.출처 :  1) https://www.edaily.co.kr/News/Read?newsId=02273046638986664&mediaCodeNo=257&OutLnkChk=Y           2) https://www.dt.co.kr/contents.html?article_no=2024081202109931081008&ref=naver...
포스트 대표 이미지

이재욱 교수 연구진, 메모리 효율적인 Any-Precision LLM 기술로 세계 선도

하나의 n-비트 대규모 언어모델(LLM)에 여러 정밀도의 모델(예: n, n-1, ..., 4, 3-비트)을 중첩하는 알고리즘 개발상황에 따라 동적으로 선택된 정밀도에 맞춰 LLM을 효율적으로 실행하는 소프트웨어 엔진 개발제한된 메모리에서 서로 다른 정확도-속도 상충관계를 갖는 멀티 모델들을 지원하여, LLM 기반 어플리케이션의 사용자 경험을 개선ICML 2024 Oral Presentation (최상위 1.5%) 논문 선정​이재욱 교수 연구진이 LLM 기반 어플리케이션의 사용자 경험을 획기적으로 향상시킬 수 있는 핵심기술을 개발하였다.​LLM을 운용할 때, 빠른 응답이 필요한 쿼리와 응답 시간이 크게 중요하지 않은 쿼리가 뒤섞여 들어올 수 있다. 예를 들어, 챗봇과 같은 대화형 응용 프로그램에서는 매우 빠른 응답이 필요하지만, 문서 분석과 같은 작업에서는 느린 응답도 허용되는 경우가 있다. 또한, 시스템의 부하에 따라 응답의 품질과 지연시간의 상충관계(tradeoff)를 조정하고자 할 수도 있다. 이렇게 다양한 응답 시간 요구사항을 가진 쿼리들을 효과적으로 처리하는 것은 사용자 경험을 개선하는 데 매우 중요하다. 이를 위해서는 여러 크기의 모델을 준비하고, 각 쿼리에 맞는 모델을 동적으로 선택해 사용하는 것이 유리하다. 그러나, 이러한 방법은 여러 버전의 모델을 저장하기 위한 메모리 사용량을 증가시킨다.​이 문제를 해결하기 위해 이재욱 교수 연구팀은 LLM에 특화된 임의 정밀도 양자화(any-precision quantization) 기술을 세계 최초로 개발했다. 제안한 기법은 마치 러시아의 마트료시카(Matryoshka) 인형처럼, n비트 모델에 그보다 낮은 정밀도를 가진 n-1, n-2, … 비트 모델을 중첩(overlay)하여 적은 메모리로 다양한 정밀도의 모델 운용을 가능하게 한다. 이 기술을 활용하면, n비트로 양자화된 모델 하나만 메모리에 저장해 두고, n비트 모델의 각 매개변수에서 최상위 비트의 일부만 사용하여 낮은 정밀도의 모델도 효과적으로 지원할 수 있다. 연구팀은 이러한 개념을 매개변수가 매우 많은 LLM에 쉽게 적용할 수 있도록, 재학습이 필요 없는 빠르고 가벼운 임의 정밀도 양자화 알고리즘을 고안했다. 또한, 이렇게 완성된 Any-Precision LLM을 효율적으로 실행할 수 있는 새로운 소프트웨어 엔진을 개발하여, 세계 최고 수준의 모델 성능 및 추론 속도를 달성했다.​이 연구는 LLM이 다양한 어플리케이션에서 높은 수준의 사용자 경험을 제공하는 데 핵심 기술로 활용될 것으로 기대된다. 해당 논문은 오는 7월에 개최되는 머신러닝 분야 최고 권위의 학회인 ICML 2024에서 발표될 예정이다. 특히 전체 제출 논문 중 최상위 1.5%만 선정되는 구두 발표(Oral Presentation) 세션에 채택되어 그 우수성을 인정받았다."Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs​", Yeonhong Park, Jake Hyun, SangLyul Cho, Bonggeun Sim, Jae W. Lee, ICML 2024.​...
포스트 대표 이미지

송현오 교수 연구진, 효율적 모델 추론을 위한 맥락 및 깊이 압축 기술과 다중목적 최적화 기술로 세계 선도

메모리 효율적 언어모델 추론을 위한 실시간 맥락 압축 기법 개발인공 신경망 깊이 압축을 위한 레이어 제거 공동 최적화 알고리즘 개발탐욕 정책 학습을 통한 블랙박스 다중목적 조합 최적화 기법 개발송현오 교수 연구진이 실시간 언어모델 맥락 압축 기법, 인공 신경망 레이어 공동 최적화 알고리즘, 블랙박스 다중목적 조합 최적화 기법을 개발하였다.실시간 언어모델 맥락 압축 [1]: ChatGPT와 같은 트랜스포머 기반 대규모 언어모델은 이전 대화 등의 맥락 정보를 처리한 다음, 연산 결과(key/value)를 캐시에 저장하여 이후 추론에 사용한다. 한편 입력값의 길이가 길어질 수록 캐시에 저장되는 값들의 용량이 커지며 언어모델 추론 연산 또한 많아진다. 본 연구에서는 언어모델의 입력값 정보를 지속적으로 압축하여 효율적인 대규모 언어모델 추론을 가능하게 하는 방법을 제안하였다. 제안하는 압축 방법은 언어모델 추론에 매우 작은 수준의 오버헤드를 더하며, 기존 방식 대비 5배 이상 작은 메모리로 동일 수준의 추론 성능을 달성한다.인공신경망 레이어 공동 최적화 [2]: 본 연구는 기존의 인공신경망 깊이 압축 알고리즘인 (1) 합성곱 레이어를 제거하는 전략과 (2) 비선형 활성화 함수를 제거하여 연속적인 합성곱 층을 하나의 층으로 병합하는 전략을 상호 보완적으로 사용하여 기존 최고기술보다 네트워크의 성능을 유지하면서 효율성을 향상시킬 수 있음을 보여준다. 이를 위해, 원하는 추론 속도를 달성하면서 성능 손실을 최소화하기 위해 제거할 활성화 층과 합성곱 층을 공동으로 최적화하여 선택하는 문제와 새로운 깊이 압축 방법인 LayerMerge를 제안한다. 이 선택 문제는 지수적 탐색 공간을 가지므로, 우리는 새로운 대리 최적화 문제를 공식화하고 이를 동적 프로그래밍을 통해 효율적으로 해결한다. 실험 결과, 우리의 방법은 이미지 분류 및 생성 작업에서 다양한 네트워크 아키텍처에 대해 기존의 깊이 압축 및 층 가지치기 방법보다 일관되게 뛰어난 성능을 보였다.블랙박스 다중목적 조합 최적화 [3]: 블랙박스 다중목적 조합 최적화는 문자열, 그래프 등 조합적 대상에서 정의된 여러 블랙박수 목적함수를 함께 최적화하는 기법으로, 신약 개발 등 큰 사회적 파급효과를 지닌 다양한 문제들에 적용될 수 있다. 쿼리-효율성을 위해 주로 연구되고 있는 능동학습 기반 방법들은 기존 평가된 데이터를 바탕으로 다음 쿼리에 넣을 최적 배치(batch)를 선정하는 부분집합선택 문제를 해결해야 한다. 본 연구는 목적 집합 함수의 하위모듈성(submodularity)에 착안하여, 탐욕 알고리즘을 모사하도록 학습한 탐욕 정책 모델을 통해 최적 배치를 선정하는 능동 학습 기법을 제안한다. 제안한 기법은 적색 형광 단백질 최적화 벤치마크에서 목표 성능을 달성하는데 필요한 쿼리 횟수를 기존 방법들보다 1.69배 이상 줄이는 결과를 얻었다.해당 연구는 머신러닝 최우수 학회인 ICLR 2024과 ICML 2024에 발표될 예정이다.[1]“Compressed Context Memory For Online Language Model Interaction”, Jang-Hyun Kim, Junyoung Yeom, Sangdoo Yun, Hyun Oh Song, ICLR 2024[2]"LayerMerge: Neural Network Depth Compression through Layer Pruning and Merging", Jinuk Kim, Marwa El Halabi, Mingi Ji, Hyun Oh Song, ICML 2024[3]"Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization", Deokjae Lee, Hyun Oh Song, Kyunghyun Cho, ICML 2024...
포스트 대표 이미지

김선 교수 연구진이 네트워크 사이언스와 머신러닝을 결합하여 약물에 적합한 질병을 예측

소셜 네트워크에서 활용되는 네트워크 알고리즘을 생물학적 네트워크에 적합하도록 변형머신러닝 기술을 접목시켜 약물과 질병의 치료 관계를 높은 정확도로 예측인공지능 신약개발 분야에 기존 약학, 병리학적 정보를 십분 활용하는 머신러닝 방법론의 가능성 제시 김선 교수와 아이겐드럭의 방동민 연구원이 주도한 인공지능 신약개발 분야 연구가 세계적으로 우수성을 인정받아 Nature Communications에 게재되었다. 김선 교수 연구진은 수십만가지의 의생물학적 데이터를 그래프 형태로 가공해 놓은 의생물학적 지식 그래프(biomedical knowledge graph) 를 활용하여 약물 재창출 (Drug repurposing, drug repositioning) 인공지능 모델인 드림워크(DREAMwalk)를 제시하였다. 이를 위하여, 기존의 소셜 네트워크 분야에서 활용되던 네트워크 알고리즘의 대표적인 줄기인 랜덤워크 (random walk) 알고리즘을 의생물학적 지식 그래프에 적합하도록 변형하였다.특히 의생물학적 지식 그래프는 유전자, 질병, 약물 등의 다양한 종류의 요소들로 구성되어 있으며 이들 중 대부분이 유전자와 그들 간의 관계에 치중되어 있다는 특징이 있으며, 이를 해결하기 위해 약물 간의 관계와 질병 간의 관계 지식들을 알고리즘에 효율적으로 녹여내었다. 또한 인공지능 예측 모델을 활용하여, 앞서 학습된 네트워크 정보를 기반으로 약물과 질병 간의 치료관계를 높은 정확도로 예측하였다.인공지능과 약학 분야의 융합의 산물인 본 연구는 기존에 컴퓨터 과학 분야에서 발전된 네트워크 과학 기술이 인공지능 신약개발 분야에 알맞게 변형되고, 또한 알려진 도메인의 지식을 잘 활용할 수 있도록 변형될 수 있다는 새로운 연구 패러다임의 실질적인 예를 제시하였다. 구축된 모델은 알츠하이머와 유방암에 대해 높은 신뢰도의 치료 약물을 발굴해주었으며, 이후에도 새로운 질병에 적용 가능한 약물들을 제시하도록 활용이 가능할 것으로 보인다. "Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers", Dongmin Bang, Sangsoo Lim, Sangseon Lee & Sun Kim, Nature Communications 14.1 (2023): 3570...
포스트 대표 이미지

제4회 민상렬 장학금 수여식 개최

故 민상렬 교수님의 연구에 대한 열정과 후학 양성의 뜻을 기리고자 '민상렬 장학금'이 제정되었습니다. 민상렬장학금은 컴퓨터시스템 관련 연구업적이 탁월한 대학원생을 매년 1인 선정하여 학업/연구 장려금 600만원을 지급합니다.제4회 장학생으로 이주헌 학생(지도교수 이영기)이 선정되었습니다. 이주헌 학생의 연구 분야는 실시간 비디오 분석 시스템으로, 다중 딥 뉴럴 네트워크(DNN) 및 렌더링 연산의 동시, 실시간 수행을 요구하는 미래형 실시간 비디오 분석 응용(혼합 현실, 자율주행 등) 워크로드를 특징짓고, 이를 지원하기 위한 모바일-클라우드 협력적 AI 시스템 기술을 연구하여 모바일 컴퓨팅 분야 최우수 국제학회 및 저널에 총 3편의 논문을 주저자로 게재하였습니다(ACM MobiCom 2020 2편, IEEE Trans. on Mobile Computing 2022 1편). 이러한 성과를 인정받아, Microsoft Research Asia Ph.D. Fellowship 2020, ACM Students in MobiSys Workshop 2021 Best Paper Award, 서울대학교 AI 연구원 AI Stars Fellowship 2021, BK21 2022 우수대학원생 등 산업계, 학계에서 다수의 상을 수상한바 있습니다.민상렬장학금 수여식은 2024년 2월 8일 서울대 컴퓨터연구소 민상렬홀에서 개최되었습니다. 앞으로도 컴퓨터시스템과 관련된 연구를 하는 많은 훌륭한 학생들이 민상렬 장학생으로 선정되는 명예를 차지하길 기대합니다....
포스트 대표 이미지

원정담 교수 연구진, "NeurIPS MyoChallenge 2023" locomotion track 1위 기록

NeurlPS conference 2023 에서 열린 MyoChallenge 2023 에서 locomotion track 1위물리 기반 시뮬레이션 환경에서 다수의 근육을 갖춘 인간 모델을 효율적이고 안정적으로 원하는 방향으로 조종할 수 있도록 하는 제어 시스템 학습 알고리즘을 개발원정담 교수 연구실 박사과정생 박정남 학생(Team GaitNet)이 NeurIPS 2023에서 열린 MyoChallenge 2023 competition의 locomotion track 에서 1위를 차지하였다. MyoChallenge 2023 은 물리 기반 근골격 시뮬레이션 환경에서 주어진 목표들을 수행하도록 사람 모델의 근육을 제어하여야 하며, '목표의 달성 정도', '제어의 효율성' 등의 기준을 바탕으로 순위를 매긴다. 총 2개의 track(locomotion, manipulation) 으로 구성되어 있으며, locomotion track은 복잡한 지형 위에서 80개의 다리 근육을 제어하여, 움직이는 물체를 따라가거나 피하는 목표가 주어진다. 해당 목표를 성공적으로 수행하는 근육 제어기를 학습함으로써 실제 사람의 동작 매커니즘과 유사한 근육기반의 시뮬레이션에서 사람의 움직임에 대한 더 깊은 이해를 할 수 있다.원정담 교수 팀은 심층강화학습에 기반한 curriculum learning 을 제안하여, 빠르게 움직이는 물체를 쫓아가거나 그 물체를 피하는 목표를 수행하면서 균형을 유지할 수 있는 제어기를 학습하는 것에 성공하였다. 연구팀은 실제 인간 동작 데이터를 활용하여 기본 걷기 및 균형 잡기 기술을 학습시킨 후, 이를 바탕으로 보다 복잡하고 민첩한 동작을 습득하는 알고리즘을 제안하였다. 실제 사람의 근골격 모델을 바탕으로 하는 복잡한 시뮬레이션 환경에서 안정적면서 민첩한 제어에 성공함으로써, 사람의 동작과 근골격계 사이의 관계를 밝히는 연구에 큰 기여를 할 것으로 기대한다. ...
포스트 대표 이미지